[1] |
O’MALLEY R E JR. Introduction to Singular Perturbation[M]. New York: Academic Press, 1974.
|
[2] |
DE JAGER E M, JIANG F. The Theory of Singular Perturbation[M]. Amsterdam: North-Holland Publishing Co, 1996.
|
[3] |
NAYFEH A H. Introduction for Perturbation Techniques[M]. New York: John Wiley & Sons, 1981.
|
[4] |
CHANG K W, HOWES F A. Nonlinear Singular Perturbation Phenomena: Theory and Application[M]. New York: Springer Verlag, 1984.
|
[5] |
BOH A.The shock location for a class of sensitive boundary value problems[J]. J of Mathematical Analysis and Applications, 1999, 235(1): 295-314.
|
[6] |
MO Jiaqi. The shock solutions for a class of singularly perturbed time delay boundary value problems[J]. Journal of Anhui Normal University (Natural Science), 2013, 36(4): 314-318.
|
[7] |
XU Yonghong, SHI Lanfang, MO Jiaqi. Boundary perturbed problem for reaction diffusion time delay equation with two parameters[J]. Journal of Wuhan University (Natural Sciences), 2015, 20(2): 93-96.
|
[8] |
MO Jiaqi, WANG Weigang, CHEN Xianfeng, et al. The shock wave solutions for singularly perturbed time delay nonlinear boundary value problems with two parameters[J]. Mathematica Applicata, 2014, 27(3): 470-475.
|
[9] |
YAO Jingsun, MO Jiaqi. Singularly perturbed solution to semilinear higher order reaction diffusion equations with two parameters[J]. Annals of Differential Equations, 2009,25(1): 91-96.
|
[10] |
FENG Yihu, MO Jiaqi. The shock asympototic solution for nonlinear elliptic equation with two parameters[J]. Mathematica Applicata, 2015, 28(3): 579-585.
|
[11] |
朱红宝.一类非线性奇摄动时滞边值问题的激波解[J].中国科学技术大学学报,2018,48(5):357-360.ZHU Hongbao.The shock solution to a class of singularly perturbed time delay nonlinear boundary value problem[J].Journal of University of Science and Technology of China,2018,48(5):357-360.
|
[12] |
TANG Rongrong. Solution with shock-boundary layer and shock-interior layer to a class of nonlinear problems[J]. Annals of Differential Equations, 2012, 28(1): 87-92.)
|
[1] |
O’MALLEY R E JR. Introduction to Singular Perturbation[M]. New York: Academic Press, 1974.
|
[2] |
DE JAGER E M, JIANG F. The Theory of Singular Perturbation[M]. Amsterdam: North-Holland Publishing Co, 1996.
|
[3] |
NAYFEH A H. Introduction for Perturbation Techniques[M]. New York: John Wiley & Sons, 1981.
|
[4] |
CHANG K W, HOWES F A. Nonlinear Singular Perturbation Phenomena: Theory and Application[M]. New York: Springer Verlag, 1984.
|
[5] |
BOH A.The shock location for a class of sensitive boundary value problems[J]. J of Mathematical Analysis and Applications, 1999, 235(1): 295-314.
|
[6] |
MO Jiaqi. The shock solutions for a class of singularly perturbed time delay boundary value problems[J]. Journal of Anhui Normal University (Natural Science), 2013, 36(4): 314-318.
|
[7] |
XU Yonghong, SHI Lanfang, MO Jiaqi. Boundary perturbed problem for reaction diffusion time delay equation with two parameters[J]. Journal of Wuhan University (Natural Sciences), 2015, 20(2): 93-96.
|
[8] |
MO Jiaqi, WANG Weigang, CHEN Xianfeng, et al. The shock wave solutions for singularly perturbed time delay nonlinear boundary value problems with two parameters[J]. Mathematica Applicata, 2014, 27(3): 470-475.
|
[9] |
YAO Jingsun, MO Jiaqi. Singularly perturbed solution to semilinear higher order reaction diffusion equations with two parameters[J]. Annals of Differential Equations, 2009,25(1): 91-96.
|
[10] |
FENG Yihu, MO Jiaqi. The shock asympototic solution for nonlinear elliptic equation with two parameters[J]. Mathematica Applicata, 2015, 28(3): 579-585.
|
[11] |
朱红宝.一类非线性奇摄动时滞边值问题的激波解[J].中国科学技术大学学报,2018,48(5):357-360.ZHU Hongbao.The shock solution to a class of singularly perturbed time delay nonlinear boundary value problem[J].Journal of University of Science and Technology of China,2018,48(5):357-360.
|
[12] |
TANG Rongrong. Solution with shock-boundary layer and shock-interior layer to a class of nonlinear problems[J]. Annals of Differential Equations, 2012, 28(1): 87-92.)
|