[1] |
Liu H, Long Z. An improved deep learning model for predicting stock market price time series. Digital Signal Processing, 2020, 102: 102741. doi: 10.1016/j.dsp.2020.102741
|
[2] |
Mokni K. A dynamic quantile regression model for the relationship between oil price and stock markets in oil-importing and oil-exporting countries. Energy, 2020, 213: 118639. doi: 10.1016/j.energy.2020.118639
|
[3] |
Wang L, Ma F, Liu J, et al. Forecasting stock index volatility: New evidence from the GARCH-MIDAS model. International Journal of Forecasting, 2020, 36 (2): 684–694. doi: 10.1016/j.ijforecast.2019.08.005
|
[4] |
Olaniyi S A S, Adewole K S, Jimoh R G. Stock trend prediction using regression analysis: A data mining approach. ARPN Journal of Systems and Software, 2011, 1 (4): 154–157.
|
[5] |
Franses P H, Ghijsels H. Additive outliers, GARCH and forecasting volatility. International Journal of Forecasting, 1999, 15 (1): 1–9. doi: 10.1016/S0169-2070(98)00053-3
|
[6] |
Mondal P, Shift L, Goswami S. Study of effectiveness of time series modeling (ARIMA) in forecasting stock indexs. International Journal of Computer Science, Engineering and Applications, 2014, 4 (2): 13–29. doi: 10.5121/ijcsea.2014.4202
|
[7] |
Challa M L, Malepati V, Kolusu S N R. S&P BSE Sensex and S&P BSE IT return forecasting using ARIMA. Financial Innovation, 2020, 6: 47. doi: 10.1186/s40854-020-00201-5
|
[8] |
Sarantis N. Nonlinearities, cyclical behavior and predictability in stock markets: International evidence. International Journal of Forecasting, 2001, 17 (3): 459–482. doi: 10.1016/S0169-2070(01)00093-0
|
[9] |
Long J, Chen Z, He W, et al. An integrated framework of deep learning and knowledge graph for prediction of stock index trend: An application in Chinese stock exchange market. Applied Soft Computing, 2020, 91: 106205. doi: 10.1016/j.asoc.2020.106205
|
[10] |
Chen Y, Wu J, Wu Z. China’s commercial bank stock index prediction using a novel K-means-LSTM hybrid approach. Expert Systems with Applications, 2022, 202: 117370. doi: 10.1016/j.eswa.2022.117370
|
[11] |
Tay F E H, Cao L. Application of support vector machines in financial time series forecasting. Omega, 2001, 29 (4): 309–317. doi: 10.1016/S0305-0483(01)00026-3
|
[12] |
Bishop C M. Neural networks and their applications. Review of Scientific Instruments, 1994, 65 (6): 1803–1832. doi: 10.1063/1.1144830
|
[13] |
Yu Z, Qin L, Chen Y, et al. Stock index forecasting based on LLE-BP neural network model. Physica A: Statistical Mechanics and Its Applications, 2020, 553: 124197. doi: 10.1016/j.physa.2020.124197
|
[14] |
Liang Y, Lin Y, Lu Q. Forecasting gold price using a novel hybrid model with ICEEMDAN and LSTM-CNN-CBAM. Expert Systems with Applications, 2022, 206: 117847. doi: 10.1016/j.eswa.2022.117847
|
[15] |
Cao J, Wang J. Stock index forecasting model based on modified convolution neural network and financial time series analysis. International Journal of Communication Systems, 2019, 32 (12): e3987. doi: 10.1002/dac.3987
|
[16] |
Sherstinsky A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D: Nonlinear Phenomena, 2020, 404: 132306. doi: 10.1016/j.physd.2019.132306
|
[17] |
Yu Y, Si X, Hu C, et al. A review of recurrent neural networks: LSTM cells and network architectures. Neural computation, 2019, 31 (7): 1235–1270. doi: 10.1162/neco_a_01199
|
[18] |
Xu G, Meng Y, Qiu X, et al. Sentiment analysis of comment texts based on BiLSTM. IEEE Access, 2019, 7: 51522–51532. doi: 10.1109/ACCESS.2019.2909919
|
[19] |
Siami-Namini S, Tavakoli N, Namin A S. The performance of LSTM and BiLSTM in forecasting time series. In: 2019 IEEE International Conference on Big Data (Big Data). Los Angeles, USA: IEEE, 2019: 3285–3292.
|
[20] |
Pirani M, Thakkar P, Jivrani P, et al. A comparative analysis of ARIMA, GRU, LSTM and BiLSTM on financial time series forecasting. In: 2022 IEEE International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE). Ballari, India: IEEE, 2022: 1–6.
|
[21] |
Lu W, Li J, Wang J, et al. A CNN-BiLSTM-AM method for stock index prediction. Neural Computing and Applications, 2021, 33 (10): 4741–4753. doi: 10.1007/s00521-020-05532-z
|
[22] |
Guo Y, Mao J, Zhao M. Rolling bearing fault diagnosis method based on attention CNN and BiLSTM network. Neural Processing Letters, 2022, 55: 3377–3410. doi: 10.1007/s11063-022-11013-2
|
[23] |
Cheng W, Wang Y, Peng Z, et al. High-efficiency chaotic time series prediction based on time convolution neural network. Chaos, Solitons & Fractals, 2021, 152: 111304. doi: 10.1016/j.chaos.2021.111304
|
[24] |
Li J, Liu Y, Li Q. Intelligent fault diagnosis of rolling bearings under imbalanced data conditions using attention-based deep learning method. Measurement, 2022, 189: 110500. doi: 10.1016/j.measurement.2021.110500
|
[25] |
Song S, Yang Z, Goh H H, et al. A novel sky image-based solar irradiance nowcasting model with convolutional block attention mechanism. Energy Reports, 2022, 8: 125–132. doi: 10.1016/j.egyr.2022.02.166
|
[26] |
Li D, Liu J, Zhao Y. Prediction of multi-site PM2.5 concentrations in Beijing using CNN-Bi LSTM with CBAM. Atmosphere, 2022, 13 (10): 1719. doi: 10.3390/atmos13101719
|
[27] |
Bengio Y, Courville A, Vincent P. Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35 (8): 1798–1828. doi: 10.1109/TPAMI.2013.50
|
[28] |
Ismail Fawaz H, Forestier G, Weber J, et al. Deep learning for time series classification: A review. Data Mining and Knowledge Discovery, 2019, 33 (4): 917–963. doi: 10.1007/s10618-019-00619-1
|
[29] |
Greff K, Srivastava R K, Koutník J, et al. LSTM: A search space odyssey. IEEE Transactions on Neural Networks and Learning Systems, 2016, 28 (10): 2222–2232. doi: 10.1109/TNNLS.2016.2582924
|
[30] |
Huang C G, Huang H Z, Li Y F. A bidirectional LSTM prognostics method under multiple operational conditions. IEEE Transactions on Industrial Electronics, 2019, 66 (11): 8792–8802. doi: 10.1109/TIE.2019.2891463
|
[31] |
Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module. In: Computer Vision – ECCV 2018. Cham, Switzerland: Springer, 2018: 3–19.
|
[32] |
Dessain J. Machine learning models predicting returns: Why most popular performance metrics are misleading and proposal for an efficient metric. Expert Systems with Applications, 2022, 199: 116970. doi: 10.1016/j.eswa.2022.116970
|
[33] |
Hansen P R, Lunde A, Nason J M. The model confidence set. Econometrica, 2011, 79 (2): 453–497. doi: 10.3982/ECTA5771
|
[34] |
Masini R P, Medeiros M C, Mendes E F. Machine learning advances for time series forecasting. Journal of Economic Surveys, 2023, 37 (1): 76–111. doi: 10.1111/joes.12429
|
[35] |
Liang C, Umar M, Ma F, et al. Climate policy uncertainty and world renewable energy index volatility forecasting. Technological Forecasting and Social Change, 2022, 182: 121810. doi: 10.1016/j.techfore.2022.121810
|
[36] |
Vidal A, Kristjanpoller W. Gold volatility prediction using a CNN-LSTM approach. Expert Systems with Applications, 2020, 157: 113481. doi: 10.1016/j.eswa.2020.113481
|
[37] |
Md A Q, Kapoor S, AV C J, et al. Novel optimization approach for stock price forecasting using multilayered sequential LSTM. Applied Soft Computing, 2023, 134: 109830. doi: 10.1016/j.asoc.2022.109830
|
[38] |
Maqbool J, Aggarwal P, Kaur R, et al. Stock prediction by integrating sentiment scores of financial news and MLP-regressor: A machine learning approach. Procedia Computer Science, 2023, 218: 1067–1078. doi: 10.1016/j.procs.2023.01.086
|
[39] |
Gülmez B. Stock price prediction with optimized deep LSTM network with artificial rabbits optimization algorithm. Expert Systems with Applications, 2023, 227 (C): 120346. doi: 10.1016/j.eswa.2023.120346
|
[40] |
Cui X, Shang W, Jiang F, et al. Stock index forecasting by hidden Markov models with trends recognition. In: 2019 IEEE International Conference on Big Data (Big Data). Los Angeles, USA: IEEE, 2019: 5292–5297.
|
[1] |
Liu H, Long Z. An improved deep learning model for predicting stock market price time series. Digital Signal Processing, 2020, 102: 102741. doi: 10.1016/j.dsp.2020.102741
|
[2] |
Mokni K. A dynamic quantile regression model for the relationship between oil price and stock markets in oil-importing and oil-exporting countries. Energy, 2020, 213: 118639. doi: 10.1016/j.energy.2020.118639
|
[3] |
Wang L, Ma F, Liu J, et al. Forecasting stock index volatility: New evidence from the GARCH-MIDAS model. International Journal of Forecasting, 2020, 36 (2): 684–694. doi: 10.1016/j.ijforecast.2019.08.005
|
[4] |
Olaniyi S A S, Adewole K S, Jimoh R G. Stock trend prediction using regression analysis: A data mining approach. ARPN Journal of Systems and Software, 2011, 1 (4): 154–157.
|
[5] |
Franses P H, Ghijsels H. Additive outliers, GARCH and forecasting volatility. International Journal of Forecasting, 1999, 15 (1): 1–9. doi: 10.1016/S0169-2070(98)00053-3
|
[6] |
Mondal P, Shift L, Goswami S. Study of effectiveness of time series modeling (ARIMA) in forecasting stock indexs. International Journal of Computer Science, Engineering and Applications, 2014, 4 (2): 13–29. doi: 10.5121/ijcsea.2014.4202
|
[7] |
Challa M L, Malepati V, Kolusu S N R. S&P BSE Sensex and S&P BSE IT return forecasting using ARIMA. Financial Innovation, 2020, 6: 47. doi: 10.1186/s40854-020-00201-5
|
[8] |
Sarantis N. Nonlinearities, cyclical behavior and predictability in stock markets: International evidence. International Journal of Forecasting, 2001, 17 (3): 459–482. doi: 10.1016/S0169-2070(01)00093-0
|
[9] |
Long J, Chen Z, He W, et al. An integrated framework of deep learning and knowledge graph for prediction of stock index trend: An application in Chinese stock exchange market. Applied Soft Computing, 2020, 91: 106205. doi: 10.1016/j.asoc.2020.106205
|
[10] |
Chen Y, Wu J, Wu Z. China’s commercial bank stock index prediction using a novel K-means-LSTM hybrid approach. Expert Systems with Applications, 2022, 202: 117370. doi: 10.1016/j.eswa.2022.117370
|
[11] |
Tay F E H, Cao L. Application of support vector machines in financial time series forecasting. Omega, 2001, 29 (4): 309–317. doi: 10.1016/S0305-0483(01)00026-3
|
[12] |
Bishop C M. Neural networks and their applications. Review of Scientific Instruments, 1994, 65 (6): 1803–1832. doi: 10.1063/1.1144830
|
[13] |
Yu Z, Qin L, Chen Y, et al. Stock index forecasting based on LLE-BP neural network model. Physica A: Statistical Mechanics and Its Applications, 2020, 553: 124197. doi: 10.1016/j.physa.2020.124197
|
[14] |
Liang Y, Lin Y, Lu Q. Forecasting gold price using a novel hybrid model with ICEEMDAN and LSTM-CNN-CBAM. Expert Systems with Applications, 2022, 206: 117847. doi: 10.1016/j.eswa.2022.117847
|
[15] |
Cao J, Wang J. Stock index forecasting model based on modified convolution neural network and financial time series analysis. International Journal of Communication Systems, 2019, 32 (12): e3987. doi: 10.1002/dac.3987
|
[16] |
Sherstinsky A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D: Nonlinear Phenomena, 2020, 404: 132306. doi: 10.1016/j.physd.2019.132306
|
[17] |
Yu Y, Si X, Hu C, et al. A review of recurrent neural networks: LSTM cells and network architectures. Neural computation, 2019, 31 (7): 1235–1270. doi: 10.1162/neco_a_01199
|
[18] |
Xu G, Meng Y, Qiu X, et al. Sentiment analysis of comment texts based on BiLSTM. IEEE Access, 2019, 7: 51522–51532. doi: 10.1109/ACCESS.2019.2909919
|
[19] |
Siami-Namini S, Tavakoli N, Namin A S. The performance of LSTM and BiLSTM in forecasting time series. In: 2019 IEEE International Conference on Big Data (Big Data). Los Angeles, USA: IEEE, 2019: 3285–3292.
|
[20] |
Pirani M, Thakkar P, Jivrani P, et al. A comparative analysis of ARIMA, GRU, LSTM and BiLSTM on financial time series forecasting. In: 2022 IEEE International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE). Ballari, India: IEEE, 2022: 1–6.
|
[21] |
Lu W, Li J, Wang J, et al. A CNN-BiLSTM-AM method for stock index prediction. Neural Computing and Applications, 2021, 33 (10): 4741–4753. doi: 10.1007/s00521-020-05532-z
|
[22] |
Guo Y, Mao J, Zhao M. Rolling bearing fault diagnosis method based on attention CNN and BiLSTM network. Neural Processing Letters, 2022, 55: 3377–3410. doi: 10.1007/s11063-022-11013-2
|
[23] |
Cheng W, Wang Y, Peng Z, et al. High-efficiency chaotic time series prediction based on time convolution neural network. Chaos, Solitons & Fractals, 2021, 152: 111304. doi: 10.1016/j.chaos.2021.111304
|
[24] |
Li J, Liu Y, Li Q. Intelligent fault diagnosis of rolling bearings under imbalanced data conditions using attention-based deep learning method. Measurement, 2022, 189: 110500. doi: 10.1016/j.measurement.2021.110500
|
[25] |
Song S, Yang Z, Goh H H, et al. A novel sky image-based solar irradiance nowcasting model with convolutional block attention mechanism. Energy Reports, 2022, 8: 125–132. doi: 10.1016/j.egyr.2022.02.166
|
[26] |
Li D, Liu J, Zhao Y. Prediction of multi-site PM2.5 concentrations in Beijing using CNN-Bi LSTM with CBAM. Atmosphere, 2022, 13 (10): 1719. doi: 10.3390/atmos13101719
|
[27] |
Bengio Y, Courville A, Vincent P. Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35 (8): 1798–1828. doi: 10.1109/TPAMI.2013.50
|
[28] |
Ismail Fawaz H, Forestier G, Weber J, et al. Deep learning for time series classification: A review. Data Mining and Knowledge Discovery, 2019, 33 (4): 917–963. doi: 10.1007/s10618-019-00619-1
|
[29] |
Greff K, Srivastava R K, Koutník J, et al. LSTM: A search space odyssey. IEEE Transactions on Neural Networks and Learning Systems, 2016, 28 (10): 2222–2232. doi: 10.1109/TNNLS.2016.2582924
|
[30] |
Huang C G, Huang H Z, Li Y F. A bidirectional LSTM prognostics method under multiple operational conditions. IEEE Transactions on Industrial Electronics, 2019, 66 (11): 8792–8802. doi: 10.1109/TIE.2019.2891463
|
[31] |
Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module. In: Computer Vision – ECCV 2018. Cham, Switzerland: Springer, 2018: 3–19.
|
[32] |
Dessain J. Machine learning models predicting returns: Why most popular performance metrics are misleading and proposal for an efficient metric. Expert Systems with Applications, 2022, 199: 116970. doi: 10.1016/j.eswa.2022.116970
|
[33] |
Hansen P R, Lunde A, Nason J M. The model confidence set. Econometrica, 2011, 79 (2): 453–497. doi: 10.3982/ECTA5771
|
[34] |
Masini R P, Medeiros M C, Mendes E F. Machine learning advances for time series forecasting. Journal of Economic Surveys, 2023, 37 (1): 76–111. doi: 10.1111/joes.12429
|
[35] |
Liang C, Umar M, Ma F, et al. Climate policy uncertainty and world renewable energy index volatility forecasting. Technological Forecasting and Social Change, 2022, 182: 121810. doi: 10.1016/j.techfore.2022.121810
|
[36] |
Vidal A, Kristjanpoller W. Gold volatility prediction using a CNN-LSTM approach. Expert Systems with Applications, 2020, 157: 113481. doi: 10.1016/j.eswa.2020.113481
|
[37] |
Md A Q, Kapoor S, AV C J, et al. Novel optimization approach for stock price forecasting using multilayered sequential LSTM. Applied Soft Computing, 2023, 134: 109830. doi: 10.1016/j.asoc.2022.109830
|
[38] |
Maqbool J, Aggarwal P, Kaur R, et al. Stock prediction by integrating sentiment scores of financial news and MLP-regressor: A machine learning approach. Procedia Computer Science, 2023, 218: 1067–1078. doi: 10.1016/j.procs.2023.01.086
|
[39] |
Gülmez B. Stock price prediction with optimized deep LSTM network with artificial rabbits optimization algorithm. Expert Systems with Applications, 2023, 227 (C): 120346. doi: 10.1016/j.eswa.2023.120346
|
[40] |
Cui X, Shang W, Jiang F, et al. Stock index forecasting by hidden Markov models with trends recognition. In: 2019 IEEE International Conference on Big Data (Big Data). Los Angeles, USA: IEEE, 2019: 5292–5297.
|