[1] |
MOTTAGHI R, CHEN X, LIU X, et al. The role of context for object detection and semantic segmentation in the wild[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014:891-898.
|
[2] |
CAESAR H, UIJLINGS J, FERRARI V. Coco-stuff: Thing and stuff classes in context[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1209-1218.
|
[3] |
ZHOU B, ZHAO H,PUIG X, et al. Scene parsing through ADE20K dataset[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2017:5122-5130.
|
[4] |
LIN G, MILAN A, SHEN C, et al. Refinenet: Multi-path refinement networks for high-resolution semantic segmentation [J]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
|
[5] |
PENG C, ZHANG X, YU G, et al. Large kernel matters-improve semantic segmentation by global convolutional network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2017.
|
[6] |
FU J, LIU J, WANG Y, et al. Stacked deconvolutional network for semantic segmentation [J]. IEEE Transactions on Image Processing, 2017:99.
|
[7] |
YU C, WANG J, PENG C, et al. Learning a discriminative feature network for semantic segmentation [C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2018.
|
[8] |
ZHANG Z, ZHANG X, PENG C, et al. Exfuse: Enhancing feature fusion for semantic segmentation [J]. European Conference on Computer Vision, 2018.
|
[9] |
WANG Y, ZHOU Q, LIU J, et al. Lednet: A lightweight encoder-decoder network for real-time semantic segmentation [C]// 2019 IEEE International Conference on Image Processing (ICIP). IEEE, 2019.
|
[10] |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018.
|
[11] |
WANG Q, WU B, ZHU P, et al. Eca-net: Efficient channel attention for deep convolutional neural networks[C]// 2020 IEEE/CVF Conference on Computer Vision & Pattern Recognition. IEEE, 2020.
|
[12] |
CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation. Proceedings of the European Conference on Computer Vision [C]//Computer Vision - ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, vol 11211. Springer, Cham, 2018.
|
[13] |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4):640-651.
|
[14] |
NOH H, HONG S, HAN B. Learning deconvolution network for semantic segmentation [C]// 2015 IEEE International Conference on Computer Vision (ICCV). IEEE, 2016.
|
[15] |
ZHENG S, JAYASUMANA S, ROMERA-PAREDES B, et al. Conditional random fields as recurrent neural networks [C]// 2015 IEEE International Conference on Computer Vision (ICCV). IEEE, 2015.
|
[16] |
RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]// Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science, vol 9351. Springer, Cham,2015.
|
[17] |
BADRINARAYANAN V, KENDALL A, CIPOLLA R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
|
[18] |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[EB/OL]. (2016-06-07)[2020-06-11]. https://arxiv.org/abs/1412.7062v4.
|
[19] |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848.
|
[20] |
CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation [EB/OL]. (2017-12-05) [2020-06-11]. https://arxiv.org/pdf/1706.05587.
|
[21] |
LAZEBNI S, SCHMID C, PONCE J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories [C]// 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE, 2006.
|
[22] |
ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network [J]. IEEE Computer Society, 2016.
|
[23] |
YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions [C]// Proceedings of the International Conference on Learning Representations. IEEE, 2015.
|
[24] |
WU H, ZHANG J, HUANG K, et al. Fastfcn: Rethinking dilated convolution in the backbone for semantic segmentation [EB/OL]. (2019-03-28)[2020-06-11]. https://arxiv.org/pdf/1903.11816.pdf.
|
[25] |
TIAN Z, HE T, SHEN C, et al. Decoders matter for semantic segmentation: Data-dependent decoding enables flexible feature aggregation [C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020.
|
[26] |
CHOLLET F. Xception: Deep learning with depthwise separable convolutions[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017.
|
[27] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2016:770-778.
|
[28] |
LIN T Y, DOLL?倕AR P, GIRSHICK R, et al. Feature pyramid networks for object detection [J]. IEEE Computer Society, 2017.
|
[29] |
HUANG G, LIU Z, MAATEN L, et al. Densely connected convolutional networks [C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017:2261-2269.
|
[30] |
EVERINGHAM M, ESLAMI S A, GOOL L V, et al. The pascal visual object classes challenge: A retrospective [J]. Springer, 2015, 111(1): 98-136.
|
[31] |
CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding [C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016.
|
[32] |
HARIHARAN B, ARBEL?倕AEZ P, BOURDEV L, et al. Semantic contours from inverse detectors[C]// IEEE International Conference on Computer Vision. IEEE, 2011.
|
[33] |
ABADI M, AGARWAL A, BARHAM P, et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems [EB/OL]. (2016-03-16)[2020-06-11]. https://arxiv.org/pdf/1603.04467.
|
[34] |
WU Z, SHEN C, HENGEL A. Wider or deeper: Revisiting the resnet model for visual recognition [J]. Elsevier, 2019: 119-133.
|
[35] |
YU C, WANG J, PENG C, et al. Learning a discriminative feature network for semantic segmentation [C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2018.
|
[36] |
ZHANG H, DANA K, SHI J, et al. Context encoding for semantic segmentation [C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2018.
|
[37] |
ZHAO H S, QI X J, SHEN X Y, et al. ICNET for real-time semantic segmentation on high-resolution images[C]//Computer Vision - ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, vol 11207. Springer, Cham, 2018.
|
[38] |
LIN G, MILAN A, SHEN C, et al. Refinenet: Multi-path refinement networks for high-resolution semantic segmentation [C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017.
|
[39] |
CHAO P, KAO C Y, RUAN Y S, et al. Hardnet: A low memory traffic network [C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2020.
|
[40] |
WU T, TANG S, ZHANG R, et al. Tree-structured kronecker convolutional network for semantic segmentation [C]// 2019 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2019.
|
[41] |
LIU C, CHEN L C, SCHROFF F, et al. Auto-deeplab: Hierarchical neural architecture search for semantic image segmentation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2019: 82-92.
|
[42] |
VALMADRE J, BERTINETTO L, HENRIQUES J, et al. End-to-end representation learning for correlation filter based tracking[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2017: 5000-5008. )
|