
Finding the optimal dose combination in two-agent dose-finding trials is challenging due to limited sample sizes and the extensive range of potential doses. Unlike traditional chemotherapy or radiotherapy, which primarily focuses on identifying the maximum tolerated dose (MTD), therapies involving targeted and immune agents facilitate the identification of an optimal biological dose combination (OBDC) by simultaneously evaluating both toxicity and efficacy. Currently, most approaches to determining the OBDC in the literature are model-based and require complex model fittings, making them cumbersome and challenging to implement. To address these challenges, we developed a novel model-assisted approach called uTPI-Comb. This approach refines the established utility-based toxicity probability interval design by integrating a strategically devised zone-based local and global candidate set searching strategy, which can effectively optimize the decision-making process for two-agent dose escalation or de-escalation in drug combination trials. Extensive simulation studies demonstrate that the uTPI-Comb design speeds up the dose-searching process and provides substantial improvements over existing model-based methods in determining the optimal biological dose combinations.
A new dose allocation method called uTPI-Comb.
[1] |
Jin H, Wang L, Bernards R. Rational combinations of targeted cancer therapies: background, advances and challenges. Nature Reviews Drug Discovery, 2023, 22 (3): 213–234. DOI: 10.1038/s41573-022-00615-z
|
[2] |
Yuan Y, Lin R, Lee J J. Model-assisted Bayesian Designs for Dose Finding and Optimization: Methods and Applications. New York: CRC Press, 2022 .
|
[3] |
Thall P F, Millikan R E, Mueller P, et al. Dose-finding with two agents in phase Ⅰ oncology trials. Biometrics, 2003, 59 (3): 487–496. DOI: 10.1111/1541-0420.00058
|
[4] |
Harrington J A, Wheeler G M, Sweeting M J, et al. Adaptive designs for dual-agent phase Ⅰ dose-escalation studies. Nature Reviews Clinical Oncology, 2013, 10 (5): 277–288. DOI: 10.1038/nrclinonc.2013.35
|
[5] |
Lin R, Yin G. Bayesian optimal interval design for dose finding in drug-combination trials. Statistical Methods in Medical Research, 2017, 26 (5): 2155–2167. DOI: 10.1177/0962280215594494
|
[6] |
Oquigley J, Pepe M, Fisher L. Continual reassessment method: A practical design for phase-1 clinical-trials in cancer. Biometrics, 1990, 46 (1): 33–48. DOI: 10.2307/2531628
|
[7] |
Liu S, Yuan Y. Bayesian optimal interval designs for phase Ⅰ clinical trials. Journal of the Royal Statistical Society Series C: Applied Statistics, 2015, 64 (3): 507–523. DOI: 10.1111/rssc.12089
|
[8] |
Lin R, Yin G. STEIN: A simple toxicity and efficacy interval design for seamless phase Ⅰ/Ⅱ clinical trials. Statistics in Medicine, 2017, 36 (26): 4106–4120. DOI: 10.1002/sim.7428
|
[9] |
Yan F, Mandrekar S J, Yuan Y. Keyboard: A novel bayesian toxicity probability interval design for phase Ⅰ clinical trials. Clinical Cancer Research, 2017, 23 (15): 3994–4003. DOI: 10.1158/1078-0432.CCR-17-0220
|
[10] |
Takeda K, Taguri M, Morita S. BOIN-ET: Bayesian optimal interval design for dose finding based on both efficacy and toxicity outcomes. Pharmaceutical Statistics, 2018, 17 (4): 383–395. DOI: 10.1002/pst.1864
|
[11] |
Zhou Y, Lee J J, Yuan Y. A utility-based Bayesian optimal interval (U-BOIN) phase Ⅰ/Ⅱ design to identify the optimal biological dose for targeted and immune therapies. Statistics in Medicine, 2019, 38 (28): S5299–S5316. DOI: 10.1002/sim.8361
|
[12] |
Lin R, Zhou Y, Yan F, et al. BOIN12: Bayesian optimal interval phase Ⅰ/Ⅱ trial design for utility-based dose finding in immunotherapy and targeted therapies. JCO Precision Oncology, 2020, 4: 1393–1402. DOI: 10.1200/PO.20.00257
|
[13] |
Takeda K, Morita S, Taguri M. TITE-BOIN-ET: Time-to-event Bayesian optimal interval design to accelerate dose-finding based on both efficacy and toxicity outcomes. Pharmaceutical Statistics, 2020, 19 (3): 335–349. DOI: 10.1002/pst.1995
|
[14] |
Shi H, Cao J, Yuan Y, et al. uTPI: A utility-based toxicity probability interval design for phase Ⅰ/Ⅱ dose-finding trials. Statistics in Medicine, 2021, 40 (11): 2626–2649. DOI: 10.1002/sim.8922
|
[15] |
Zhou Y, Lin R, Lee J J, et al. TITE-BOIN12: A Bayesian phase Ⅰ/Ⅱ trial design to find the optimal biological dose with late-onset toxicity and efficacy. Statistics in Medicine, 2022, 41 (11): 1918–1931. DOI: 10.1002/sim.9337
|
[16] |
Mandrekar S J, Cui Y, Sargent D J. An adaptive phase I design for identifying a biologically optimal dose for dual agent drug combinations. Statistics in Medicine, 2007, 26 (11): 2317–2330. DOI: 10.1002/sim.2707
|
[17] |
Yuan Y, Yin G. Bayesian phase Ⅰ/Ⅱ adaptively randomized oncology trials with combined drugs. Annals of Applied Statistics, 2011, 5 (2A): 924–942. DOI: 10.1214/10-AOAS433
|
[18] |
Cai C Y, Yuan Y, Ji Y. A Bayesian dose finding design for oncology clinical trials of combinational biological agents. Journal of the Royal Statistical Society Series C: Applied Statistics, 2014, 63 (1): 159–173. DOI: 10.1111/rssc.12039
|
[19] |
Wang Z, Zhang J, Xia T, et al. A Bayesian phase Ⅰ–Ⅱ clinical trial design to find the biological optimal dose on drug combination. Journal of Biopharmaceutical Statistics, 2023, 34 (4): 582–595. DOI: 10.1080/10543406.2023.2236208
|
[20] |
Zhang J, Yan F, Wages N A, et al. Local continual reassessment methods for dose finding and optimization in drug-combination trials. Statistical Methods in Medical Research, 2023, 32 (10): 2049–2063. DOI: 10.1177/09622802231192955
|
[21] |
Huang X, Biswas S, Oki Y, et al. A parallel phaseⅠ/Ⅱ clinical trial design for combination therapies. Biometrics, 2007, 63 (2): 429–436. DOI: 10.1111/j.1541-0420.2006.00685.x
|
[22] |
Wages N A, Conaway M R, O'Quigley J. Continual reassessment method for partial ordering. Biometrics, 2011, 67 (4): 1555–1563. DOI: 10.1111/j.1541-0420.2011.01560.x
|
[23] |
Shimamura, F, Hamada C, Matsui S, et al. Two-stage approach based on zone and dose findings for two-agent combination Phase Ⅰ/Ⅱ trials. Journal of Biopharmaceutical Statistics, 2018, 28 (6): 1025–1037. DOI: 10.1080/10543406.2018.1434190
|
[24] |
Pan H, Lin R, Zhou Y, et al. Keyboard design for phase Ⅰ drug-combination trials. Contemporary Clinical Trials, 2020, 92: 105972. DOI: 10.1016/j.cct.2020.105972
|
Drug A | ||||||||||
1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
Drug B | Toxicity probability | Efficacy probability | ||||||||
Scenario 1 | ||||||||||
1 | 0.05 | 0.15 | 0.30 | 0.45 | 0.55 | 0.05 | 0.25 | 0.50 | 0.55 | 0.60 |
2 | 0.15 | 0.35 | 0.45 | 0.55 | 0.65 | 0.25 | 0.50 | 0.55 | 0.60 | 0.65 |
3 | 0.35 | 0.45 | 0.55 | 0.65 | 0.75 | 0.50 | 0.55 | 0.60 | 0.65 | 0.70 |
Scenario 2 | ||||||||||
1 | 0.10 | 0.15 | 0.21 | 0.30 | 0.42 | 0.10 | 0.18 | 0.35 | 0.50 | 0.52 |
2 | 0.15 | 0.24 | 0.30 | 0.42 | 0.44 | 0.15 | 0.35 | 0.50 | 0.52 | 0.53 |
3 | 0.20 | 0.30 | 0.42 | 0.44 | 0.51 | 0.20 | 0.50 | 0.52 | 0.54 | 0.56 |
Scenario 3 | ||||||||||
1 | 0.05 | 0.10 | 0.18 | 0.25 | 0.42 | 0.30 | 0.45 | 0.60 | 0.45 | 0.26 |
2 | 0.10 | 0.15 | 0.23 | 0.42 | 0.43 | 0.20 | 0.28 | 0.45 | 0.26 | 0.18 |
3 | 0.15 | 0.23 | 0.45 | 0.50 | 0.55 | 0.10 | 0.14 | 0.24 | 0.18 | 0.10 |
Scenario 4 | ||||||||||
1 | 0.02 | 0.04 | 0.07 | 0.12 | 0.18 | 0.10 | 0.30 | 0.45 | 0.30 | 0.08 |
2 | 0.04 | 0.07 | 0.13 | 0.18 | 0.25 | 0.25 | 0.45 | 0.60 | 0.45 | 0.23 |
3 | 0.14 | 0.25 | 0.25 | 0.25 | 0.25 | 0.20 | 0.30 | 0.45 | 0.30 | 0.16 |
Scenario 5 | ||||||||||
1 | 0.15 | 0.21 | 0.30 | 0.42 | 0.44 | 0.20 | 0.45 | 0.33 | 0.15 | 0.05 |
2 | 0.24 | 0.3 | 0.42 | 0.44 | 0.51 | 0.35 | 0.60 | 0.45 | 0.20 | 0.15 |
3 | 0.30 | 0.33 | 0.44 | 0.51 | 0.55 | 0.20 | 0.45 | 0.30 | 0.15 | 0.10 |
Scenario 6 | ||||||||||
1 | 0.05 | 0.09 | 0.17 | 0.24 | 0.30 | 0.20 | 0.29 | 0.55 | 0.20 | 0.15 |
2 | 0.15 | 0.19 | 0.23 | 0.35 | 0.42 | 0.30 | 0.39 | 0.55 | 0.25 | 0.20 |
3 | 0.34 | 0.38 | 0.43 | 0.51 | 0.66 | 0.36 | 0.35 | 0.30 | 0.23 | 0.20 |
Scenario 7 | ||||||||||
1 | 0.05 | 0.09 | 0.14 | 0.23 | 0.30 | 0.10 | 0.18 | 0.25 | 0.30 | 0.31 |
2 | 0.11 | 0.15 | 0.17 | 0.24 | 0.42 | 0.20 | 0.28 | 0.35 | 0.50 | 0.52 |
3 | 0.14 | 0.18 | 0.23 | 0.41 | 0.46 | 0.23 | 0.30 | 0.50 | 0.52 | 0.53 |
Scenario 8 | ||||||||||
1 | 0.10 | 0.15 | 0.30 | 0.35 | 0.45 | 0.10 | 0.20 | 0.30 | 0.50 | 0.55 |
2 | 0.15 | 0.20 | 0.35 | 0.45 | 0.50 | 0.15 | 0.25 | 0.50 | 0.55 | 0.60 |
3 | 0.20 | 0.30 | 0.35 | 0.51 | 0.60 | 0.20 | 0.30 | 0.50 | 0.60 | 0.70 |
Scenario 9 | ||||||||||
1 | 0.15 | 0.21 | 0.30 | 0.42 | 0.44 | 0.21 | 0.15 | 0.12 | 0.09 | 0.05 |
2 | 0.24 | 0.30 | 0.42 | 0.44 | 0.51 | 0.60 | 0.45 | 0.33 | 0.24 | 0.21 |
3 | 0.30 | 0.33 | 0.44 | 0.51 | 0.55 | 0.45 | 0.31 | 0.24 | 0.21 | 0.17 |
Scenario 10 | ||||||||||
1 | 0.50 | 0.56 | 0.65 | 0.68 | 0.72 | 0.52 | 0.62 | 0.70 | 0.76 | 0.79 |
2 | 0.55 | 0.62 | 0.70 | 0.72 | 0.80 | 0.55 | 0.66 | 0.74 | 0.79 | 0.82 |
3 | 0.60 | 0.67 | 0.75 | 0.79 | 0.85 | 0.58 | 0.70 | 0.78 | 0.82 | 0.85 |
OBDC(s): optimal biological dose combination(s); TDC(s): target dose combination(s). OBDC(s) are in boldface and underline. TDC(s) are in boldface. |