ISSN 0253-2778

CN 34-1054/N

open
Open AccessOpen Access JUSTC Earth and Space Article 10 May 2022

Re-visiting barium isotope compositions of mid-ocean ridge basalts and the implications

Cite this: JUSTC, 2022, 52(3): 1
https://doi.org/10.52396/JUSTC-2021-0276
CSTR: 32290.14.JUSTC-2021-0276
More Information
  • Corresponding author:

    Xiaoyun Nan, E-mail: nanxiaoy@ustc.edu.cn

  • Received Date: December 23, 2021
  • Accepted Date: January 29, 2022
  • Available Online: May 10, 2022
  • Barium (Ba) isotopes can be used as potential tracers for crustal material recycling in the mantle. Determination of the Ba isotope composition of the depleted mantle is essential for such applications. However, Ba isotope data for mantle-derived basalts are still rare. In this study, we reported high-precision Ba isotope data of 30 oceanic basalts including 25 mid-ocean ridge basalts (MORBs) from geochemically and geologically diverse mid-ocean ridge segments and five back-arc basin basalts. The δ138/134Ba values of these samples varied from −0.06‰ to +0.11‰, with no systematic cross-region variation. Together with published data, we constrained the average δ138/134Ba of global MORBs to +0.05‰±0.09‰ (2 standard deviation, n = 51). Based on depleted MORBs that have (La/Sm)N < 0.8, low 87Sr/86Sr (< 0.70263), and low Ba/Th < 71.3, we estimated the average δ138/134Ba of the depleted MORB mantle (DMM) as + 0.05‰ ± 0.05‰ (2SD, n = 16) that is significantly lower than the DMM (≈ 0.14‰) reported previously. If a new estimation of the DMM is applied, it is unreasonable to infer that the Ba isotope signatures of the “enriched-type” MORBs (E-MORBs) could be attributed to pervasive sediment recycling in the upper mantle. We, therefore, conclude that the Ba isotope compositions of the E-MORBs could be sourced from the incorporation of subducted altered oceanic crust and/or sediments depending on the Ba isotope composition and other geochemical information of the local mantle.

    We estimate the average δ138/134Ba of the depleted MORB mantle (DMM) as +0.05‰±0.05‰ (2SD, n=16) based on D-MORBs.

    • The δ138/134Ba of the global MORBs range from −0.06‰ to +0.15‰.
    • This study obtains the average δ138/134Ba of the DMM as +0.05‰±0.05‰ (2SD, n=16), which is much lower than the previous estimation.
    • Ba isotope compositions of the E-MORBs could be sourced by the incorporation of subducted AOC and/or sediments.

Catalog

    {{if article.pdfAccess}}
    {{if article.articleBusiness.pdfLink && article.articleBusiness.pdfLink != ''}} {{else}} {{/if}}PDF
    {{/if}}
    XML

    Figure  1.   Correlations between δ138/134Ba and (a) (La/Sm)N, (b) 87Sr/86Sr, and (c) Ba/Th for the mid-ocean ridge basalt (MORB) and back-arc basin basalt (BABB) samples in our study and MORB samples analyzed by Nielsen et al.[7]. Data are from Table 1. Error bars represent 2SD uncertainties. The vertical dotted lines present the defined average (La/Sm)N[16], 87Sr/86Sr[28], and Ba/Th[28] of the depleted MORB mantle. Samples in the orange shade are marked as depleted MORB, and those in the blue shade are marked as normal-type MORB or enriched-type MORB.

    Figure  2.   The histogram of Ba isotope compositions of MORBs and BABBs investigated in this study. Literature data of MORBs are from Nielsen et al.[7]. Data are from Table 1.

    Figure  3.   δ138/134Ba versus (a) MgO, (b) SiO2 and (c) Na8 for MORBs and BABBs. Na8 = Na2O + 0.373 × MgO − 2.98 (from Ref. [27]). Data are from Table 1. The error bars represent the 2SD uncertainties.

    [1]
    Rudnick R L, Gao S. Composition of the continental crust. In: Holland H D, Turekian K K, editors. Treatise on Geochemistry. Amsterdam: Elsevier, 2003, 3: 659.
    [2]
    Plank T, Langmuir C H. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 1998, 145: 325–394. DOI: 10.1016/S0009-2541(97)00150-2
    [3]
    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 1989, 42: 313–345. DOI: 10.1144/GSL.SP.1989.042.01.19
    [4]
    Kessel R, Schmidt M W, Ulmer P, et al. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature, 2005, 437: 724–727. DOI: 10.1038/nature03971
    [5]
    Eugster O, Tera F, Wasserburg G J. Isotopic analyses of barium in meteorites and in terrestrial samples. Journal of Geophysical Research, 1969, 74 (15): 3897–3908. DOI: 10.1029/JB074i015p03897
    [6]
    Nan X Y, Yu H M, Rudnick R L, et al. Barium isotopic composition of the upper continental crust. Geochimica et Cosmochimica Acta, 2018, 233: 33–49. DOI: 10.1016/j.gca.2018.05.004
    [7]
    Nielsen S G, Horner T J, Pryer H V, et al. Barium isotope evidence for pervasive sediment recycling in the upper mantle. Science Advances, 2018, 4 (7): eaas8675. DOI: 10.1126/sciadv.aas8675
    [8]
    Nielsen S G, Shu Y, Auro M, et al. Barium isotope systematics of subduction zones. Geochimica et Cosmochimica Acta, 2020, 275: 1–18. DOI: 10.1016/j.gca.2020.02.006
    [9]
    Bridgestock L, Hsieh Y-T, Porcelli D, et al. Controls on the barium isotope compositions of marine sediments. Earth and Planetary Science Letters, 2018, 481: 101–110. DOI: 10.1016/j.jpgl.2017.10.019
    [10]
    Li W-Y, Yu H-M, Xu J, et al. Barium isotopic composition of the mantle: Constraints from carbonatites. Geochimica et Cosmochimica Acta, 2020, 278: 235–243. DOI: 10.1016/j.gca.2019.06.041
    [11]
    Wu F, Turner S, Schaefer B F. Mélange versus fluid and melt enrichment of subarc mantle: A novel test using barium isotopes in the Tonga-Kermadec arc. Geology, 2020, 48: 1053–1057. DOI: 10.1130/G47549.1
    [12]
    White W M, Klein E M, Holland H D, et al. Composition of the oceanic crust. In: Holland H D, Turekian K K, editors. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier, 2014, 4: 457-496.
    [13]
    Hofmann A W. Sampling mantle heterogeneity through oceanic basalts: Isotopes and trace elements. In: Holland H D, Turekian K K, editors. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier, 2014, 3: 67-101.
    [14]
    Hofmann A W. Mantle geochemistry: the message from oceanic volcanism. Nature, 1997, 385: 219–229. DOI: 10.1038/385219a0
    [15]
    Eiler J M, Schiano P, Kitchen N, et al. Oxygen-isotope evidence for recycled crust in the sources of mid-ocean-ridge basalts. Nature, 2000, 403: 530–534. DOI: 10.1038/35000553
    [16]
    Gale A, Dalton C A, Langmuir C H, et al. The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 2013, 14: 489–518. DOI: 10.1029/2012GC004334
    [17]
    Wanless V D, Perfit M R, Ridley W I, et al. Dacite petrogenesis on mid-ocean ridges: Evidence for oceanic crustal melting and assimilation. Journal of Petrology, 2010, 51: 2377–2410. DOI: 10.1093/petrology/egq056
    [18]
    Wanless V D, Perfit M R, Ridley W I, et al. Volatile abundances and oxygen isotopes in basaltic to dacitic lavas on mid-ocean ridges: The role of assimilation at spreading centers. Chemical Geology, 2011, 287: 54–65. DOI: 10.1016/j.chemgeo.2011.05.017
    [19]
    Arevalo Jr R, McDonough W F. Chemical variations and regional diversity observed in MORB. Chemical Geology, 2010, 271: 70–85. DOI: 10.1016/j.chemgeo.2009.12.013
    [20]
    Perfit M R, Wanless V D, Ridley W I, et al. Lava geochemistry as a probe into crustal formation at the East Pacific Rise. Oceanography, 2012, 25 (1): 89–93. DOI: 10.5670/oceanog.2012.06
    [21]
    Wanless V D, Perfit M R, Klein E M, et al. Reconciling geochemical and geophysical observations of magma supply and melt distribution at the 9°N overlapping spreading center, East Pacific Rise. Geochemistry, Geophysics, Geosystems, 2012, 13 (11): Q11005. DOI: 10.1029/2012GC004168
    [22]
    Bézos A, Escrig S, Langmuir C H, et al. Origins of chemical diversity of back-arc basin basalts: A segment-scale study of the Eastern Lau Spreading Center. Journal of Geophysical Research:Solid Earth, 2009, 114 (B6): B06212. DOI: 10.1029/2008JB005924
    [23]
    Chen F, Li X H, Wang X L, et al. Zircon age and Nd–Hf isotopic composition of the Yunnan Tethyan belt, southwestern China. International Journal of Earth Sciences, 2007, 96: 1179–1194. DOI: 10.1007/s00531-006-0146-y
    [24]
    Nan X Y, Wu F, Zhang Z F, et al. High-precision barium isotope measurements by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2015, 30: 2307–2315. DOI: 10.1039/C5JA00166H
    [25]
    Weis D, Kieffer B, Maerschalk C, et al. High‐precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS. Geochemistry, Geophysics, Geosystems, 2006, 7: Q08006. DOI: 10.1029/2006GC001283
    [26]
    Deng G X, Kang J T, Nan X Y, et al. Barium isotope evidence for crystal-melt separation in granitic magma reservoirs. Geochimica et Cosmochimica Acta, 2021, 292: 115–129. DOI: 10.1016/j.gca.2020.09.027
    [27]
    Klein E M, Langmuir C H. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. Journal of Geophysical Research:Solid Earth, 1987, 92 (B8): 8089–8115. DOI: 10.1029/JB092iB08p08089
    [28]
    Workman R K, Hart S R. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 2005, 231: 53–72. DOI: 10.1016/j.jpgl.2004.12.005
    [29]
    Hofmann A W. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 1988, 90: 297–314. DOI: 10.1016/0012-821X(88)90132-X
    [30]
    Schilling J G, Zajac M, Evans R, et al. Petrologic and geochemical variations along the Mid-Atlantic Ridge from 29°N to 73°N. American Journal of Science, 1983, 283 (6): 510–586. DOI: 10.2475/ajs.283.6.510
    [31]
    Taylor R N, Thirlwall M F, Murton B J, et al. Isotopic constraints on the influence of the Icelandic plume. Earth and Planetary Science Letters, 1997, 148: E1–E8. DOI: 10.1016/S0012-821X(97)00038-1
    [32]
    Elliott T, Thomas A, Jeffcoate A, et al. Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts. Nature, 2006, 443: 565–568. DOI: 10.1038/nature05144
    [33]
    Hao L L, Nan X Y, Kerr A C, et al. Mg-Ba-Sr-Nd isotopic evidence for a mélange origin of early Paleozoic arc magmatism. Earth and Planetary Science Letters, 2022, 577: 117263. DOI: 10.1016/j.jpgl.2021.117263
    [34]
    Gu X-F, Guo S, Yu H-M, et al. Behavior of barium isotopes during high-pressure metamorphism and fluid evolution. Earth and Planetary Science Letters, 2021, 575: 117176. DOI: 10.1016/j.jpgl.2021.117176

    Article Metrics

    Article views (1615) PDF downloads (5010) Cited by(19)>>

    Cited by

    Periodical cited type(19)

    1. Shu, Y., Nielsen, S.G., Le Roux, V. et al. Mélange dehydration and melting beneath South Sandwich Islands arc. Nature Communications, 2025, 16(1): 1440. DOI:10.1038/s41467-025-56554-x
    2. Knight, A.C.G., Tipper, E.T., Bradbury, H.J. et al. Experimental constraints on barium isotope fractionation during adsorption–desorption reactions: Implications for weathering and erosion tracer applications. Geochimica et Cosmochimica Acta, 2024. DOI:10.1016/j.gca.2024.08.016
    3. Hu, X., Deng, G., Chen, X. et al. Tracing the migration and extreme enrichment of critical metals using metal-stable isotopes | [金属稳定同位素示踪关键金属的运移和超常富集]. Dizhi Xuebao/Acta Geologica Sinica, 2024, 98(5): 1550-1572. DOI:10.19762/j.cnki.dizhixuebao.2024085
    4. Nie, C., Kang, J.-T., Jiang, Y. et al. Effect of terrestrial weathering on stable Sr and Ba isotope compositions of eucrites. Geochimica et Cosmochimica Acta, 2024. DOI:10.1016/j.gca.2024.03.009
    5. Li, Q., Zhao, K.-D., Zhu, Z.-Y. et al. Barium isotope variations in highly-fractionated granites linked to tin mineralization: New insights into tin recycling and enrichment in the continental crust. Chemical Geology, 2024. DOI:10.1016/j.chemgeo.2023.121914
    6. Teng, F.-Z., Williams, H.M. Non-traditional stable isotope geochemistry of oceanic basalts. Treatise on Geochemistry, Third Edition, 8 Volume Set, 2024. DOI:10.1016/B978-0-323-99762-1.00133-9
    7. Prytulak, J., König, S. Stable isotope variations in arc lavas. Treatise on Geochemistry, Third Edition, 8 Volume Set, 2024. DOI:10.1016/B978-0-323-99762-1.00118-2
    8. Nan, X.-Y., Wu, F., Yu, H.-M. et al. Barium isotope compositions of altered oceanic crust from the IODP Site 1256 at the East Pacific rise. Chemical Geology, 2023. DOI:10.1016/j.chemgeo.2023.121778
    9. Wang, B., Moynier, F., Jackson, M.G. et al. Rubidium isotopic fractionation during magmatic processes and the composition of the bulk silicate Earth. Geochimica et Cosmochimica Acta, 2023. DOI:10.1016/j.gca.2023.05.021
    10. Chen, A., Chen, Y.-X., Gu, X. et al. Barium isotope behavior during interaction between serpentinite-derived fluids and metamorphic rocks in the continental subduction zone. Geochimica et Cosmochimica Acta, 2023. DOI:10.1016/j.gca.2023.05.016
    11. Xu, J., Li, W.-Y., Gu, X.-F. et al. Barium isotope fractionation during slab dehydration: Records from an eclogite-quartz vein system in Dabie orogen. Geochimica et Cosmochimica Acta, 2023. DOI:10.1016/j.gca.2022.11.030
    12. Wu, F., Turner, S., Hoernle, K. et al. Barium isotope composition of depleted MORB mantle constrained by basalts from the South Mid-Atlantic Ridge (5–11°S) with implication for recycled components in the convecting upper mantle. Geochimica et Cosmochimica Acta, 2023. DOI:10.1016/j.gca.2022.11.013
    13. Jiang, D.-S., Erdmann, S., Deng, G.-X. et al. Barium isotope evidence for the generation of peralkaline granites from a fluid-metasomatized crustal source. Chemical Geology, 2022. DOI:10.1016/j.chemgeo.2022.121197
    14. Yu, H.-M., Nan, X.-Y., Wu, F. et al. Barium isotope evidence of a fluid-metasomatized mantle component in the source of Azores OIB. Chemical Geology, 2022. DOI:10.1016/j.chemgeo.2022.121097
    15. Bai, R., Jackson, M.G., Huang, F. et al. Barium isotopes in ocean island basalts as tracers of mantle processes. Geochimica et Cosmochimica Acta, 2022. DOI:10.1016/j.gca.2022.08.023
    16. Shu, Y., Zhang, G.-L., Tian, L.-L. et al. Constraints of barium isotopes on recycling of ancient oceanic crust in the mantle of the South China Sea. Journal of Volcanology and Geothermal Research, 2022. DOI:10.1016/j.jvolgeores.2022.107608
    17. Fang, L., Moynier, F., Huang, F. et al. Barium stable isotopic composition of chondrites and its implication for the Earth. Chemical Geology, 2022. DOI:10.1016/j.chemgeo.2022.120923
    18. Xu, Z., Zheng, Y.-F., Zhao, Z.-F. Barium isotope fractionation during dehydration melting of the subducting oceanic crust: Geochemical evidence from OIB-like continental basalts. Chemical Geology, 2022. DOI:10.1016/j.chemgeo.2022.120751
    19. Huang, F., Yu, H., Nan, X. et al. Ba isotope geochemistry of the mantle | [地幔的Ba同位素地球化学]. Yanshi Xuebao/Acta Petrologica Sinica, 2022, 38(12): 3659-3672. DOI:10.18654/1000-0569/2022.12.06

    Other cited types(0)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return