ISSN 0253-2778

CN 34-1054/N

open

Petroleum-contaminated soil extent recorded by δ15N and δ13C of plants and soils

  • Petroleum contamination in terrestrial environments caused by industrial activities is a significant problem that has received considerable attention. Carbon and nitrogen isotopic compositions (δ13C and δ15N) effectively describe the behavior of plants and soils under petroleum contamination stress. To better understand plant and soil responses to petroleum-contaminated soil, δ13C and δ15N values of the plants (Trifolium repens, Leguminosae with C3 photosynthesis pathway, and Agropyron cristatum with C4 photosynthesis pathway) and the soil samples under one-month exposure to different extents of petroleum contamination were measured. The results showed that petroleum contamination in the soil induced the soil δ15N values to increase and δ13C values to decrease; from 1.9‰ to 3.2‰ and from −23.6‰ to −26.8‰, respectively. However, the δ13C values of Agropyron cristatum decreased from −29.8‰ to −31.6‰, and the δ13C values of Trifolium repens remained relatively stable from −12.6‰ to −13.1‰, indicating that they have different coping strategies under petroleum-contaminated soil conditions. Moreover, the δ15N values of Trifolium repens decreased from 5.6‰ to 0.8‰ near the air δ15N values under petroleum-contaminated soil, which implies that their nitrogen fixation system works to reduce soil petroleum stress. The δ13C and δ15N values of Agropyron cristatum and Trifolium repens reflect changes in the metabolic system when they confront stressful environments. Therefore, stable isotopic compositions are useful proxies for monitoring petroleum-contaminated soil and evaluating the response of plants to petroleum contamination stress.
  • loading

Catalog

    {{if article.pdfAccess}}
    {{if article.articleBusiness.pdfLink && article.articleBusiness.pdfLink != ''}} {{else}} {{/if}}PDF
    {{/if}}
    XML

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return