f is even | f is odd | |
16\times (0,0) | p-11-6x | p-7+2x |
16\times (0,1) | p-3+2x+8y | p+1+2x-8y |
16\times (0,2) | p-3+2x | p+1-6x |
16\times (0,3) | p-3+2x-8y | p+1+2x+8y |
16\times (1,1) | p-3+2x-8y | p-3-2x |
16\times (1,2) | p+1-2x | p+1+2x+8y |
Given a partition of
The autocorrelation
[1] |
Fan P, Darnell M. Sequence Design for Communications Applications. London: Research Studies Press, 1996.
|
[2] |
Golomb S, Gong G. Signal Design for Good Correlation: For Wireless Communication, Cryptography and Radar. Cambridge, UK: Cambridge University Press, 2005.
|
[3] |
Cusick T, Ding C, Renvall A. Stream Ciphers and Number Theory. Amsterdam: North-Holland Publishing, 1998.
|
[4] |
Luo G, Cao X, Shi M, et al. Three new constructions of asymptotically optimal periodic quasi-complementary sequence sets with small alphabet sizes. IEEE Trans. Inf. Theory, 2021, 67 (8): 5168–5177. DOI: 10.1109/TIT.2021.3068474
|
[5] |
Shi M, Qian L, Helleseth T, et al. Five-weight codes from three-valued correlation of M-sequences. Adv. Math. Commun., 2021: doi 10.3934/amc.2021022. DOI: 10.3934/amc.2021022
|
[6] |
Luo L, Ma W, Zhao F. Binary sequence pairs of period p m−1 with optimal three-level correlation. IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2018, E101-A (8): 1263–1266. DOI: 10.1587/transfun.E101.A.1263
|
[7] |
Shen X, Jia Y, Song X. Constructions of binary sequence pairs of period 3p with optimal three-level correlation. IEEE Commun. Lett., 2017, 21 (10): 2150–2153. DOI: 10.1109/LCOMM.2017.2700845
|
[8] |
Peng X, Ren J, Xu C, et al. New families of binary sequence pairs with three-level correlation and odd composite length. IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2016, E99-A (4): 874–879. DOI: 10.1587/transfun.E99.A.874
|
[9] |
Yang Y, Tang X, Zhou Z. The autocorrelation magnitude of balanced binary sequence pairs of prime period N≡1 (mod 4) with optimal cross-correlation. IEEE Commun. Lett., 2015, 19 (4): 585–588. DOI: 10.1109/LCOMM.2015.2402278
|
[10] |
Li M, Peng W, Bai P, et al. Construction of several classes of binary and quaternary complete sequences and sequence pairs. Wirel. Pers. Commun., 2015, 82 (1): 113–122. DOI: 10.1007/s11277-014-2197-x
|
[11] |
Peng X, Xu C. New construction of quaternary sequence pairs with even period and three-level correlation. In: Proceedings of the Fifth International Workshop on Signal Design and Its Applications in Communications. IEEE, 2011: 72–75.
|
[12] |
Yang Y, Tang X. Balanced quaternary sequences pairs of odd period with (almost) optimal autocorrelation and cross-correlation. IEEE Commun. Lett., 2014, 18 (8): 1327–1330. DOI: 10.1109/LCOMM.2014.2328603
|
[13] |
Zhou Z, Li J, Yang Y, et al. Two constructions of quaternary periodic complementary pairs. IEEE Commun. Lett., 2018, 22 (12): 2507–2510. DOI: 10.1109/LCOMM.2018.2876530
|
[14] |
Bouniakowsky V. Nouveaux théorèmes relatifs à la distinction des nombres premiers et à la de composition des entiers en facteurs. Sc. Math. Phys., 1857, 6: 305–329.
|
[15] |
Shen X, Jia Y, Song X, et al. New construction methods for binary sequence pairs of period pq with ideal two-level correlation. IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2018, E101-A (4): 704–712. DOI: 10.1587/transfun.E101.A.704
|
f is even | f is odd | |
16\times (0,0) | p-11-6x | p-7+2x |
16\times (0,1) | p-3+2x+8y | p+1+2x-8y |
16\times (0,2) | p-3+2x | p+1-6x |
16\times (0,3) | p-3+2x-8y | p+1+2x+8y |
16\times (1,1) | p-3+2x-8y | p-3-2x |
16\times (1,2) | p+1-2x | p+1+2x+8y |
If 2 is a quartic residue | If 2 is not a quartic residue | |
64\times(0,0) | p-23-18x-24a | p-23+6x |
64\times(0,1) | p-7+2x+4a+16y+16b | p-7+2x+4a |
64\times(0,2) | p-7+6x+16y | p-7-2x-8a-16y |
64\times(0,3) | p-7+2x+4a-16y+16b | p-7+2x+4a |
64\times(0,4) | p-7-2x+8a | p-7-10x |
64\times(0,5) | p-7+2x+4a+16y-16b | p-7+2x+4a |
64\times(0,6) | p-7+6x-16y | p-7-2x-8a+16y |
64\times(0,7) | p-7+2x+4a-16y-16b | p-7+2x+4a |
64\times(1,2) | p+1+2x-4a | p+1-6x+4a |
64\times(1,3) | p+1-6x+4a | p+1+2x-4a-16b |
64\times(1,4) | p+1+2x-4a | p+1+2x-4a+16y |
64\times(1,5) | p+1+2x-4a | p+1+2x-4a-16y |
64\times(1,6) | p+1-6x+4a | p+1+2x-4a+16b |
64\times(2,4) | p+1-2x | p+1+6x+8a |
64\times(2,5) | p+1+2x-4a | p+1-6x+4a |