ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Chemistry 13 June 2023

Amorphous TiO2 ultrathin nanosheet for stable high-rate lithium storage

Cite this:
https://doi.org/10.52396/JUSTC-2023-0057
More Information
  • Author Bio:

    Zhongda Chen is currently a master’s student in the School of Chemistry and Materials Science, University of Science and Technology of China. His research mainly focuses on amorphous TiO2 in alkali metal ion batteries

    Min Zhou received her Ph.D. degree in Inorganic Chemistry from the University of Science and Technology of China. She is currently a Professor in Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China. Her research mainly focuses on material geometry

  • Corresponding author: E-mail: mzchem@ustc.edu.cn
  • Received Date: 05 April 2023
  • Accepted Date: 17 May 2023
  • Available Online: 13 June 2023
  • The use of intercalation-type metal oxides as anode materials in rechargeable lithium-ion batteries is appealing due to their reduced risk of Li plating at low voltages. However, their implementation for fast-charging applications is limited by their lower energy and power density, as well as cycling instability. Herein, we present an amorphous TiO2 nanosheet that exhibits exceptional cycling stability with a high capacity of 231 mA · h · g−1 after 200 cycles at 500 mA · g−1 and 156.7 mA · h · g−1 after 1000 cycles at a high current density of 6 A · g−1. We attribute the enhanced rate performance to the amorphous nature with high isotropy, which facilitates low energy migration paths and ion availability and can accommodate large changes in volume. This work suggests that amorphization represents a promising strategy for developing unconventional metal oxide electrode materials with high-rate performance.
    Titanium dioxide anode with enhanced lithium storage by amorphization.
    The use of intercalation-type metal oxides as anode materials in rechargeable lithium-ion batteries is appealing due to their reduced risk of Li plating at low voltages. However, their implementation for fast-charging applications is limited by their lower energy and power density, as well as cycling instability. Herein, we present an amorphous TiO2 nanosheet that exhibits exceptional cycling stability with a high capacity of 231 mA · h · g−1 after 200 cycles at 500 mA · g−1 and 156.7 mA · h · g−1 after 1000 cycles at a high current density of 6 A · g−1. We attribute the enhanced rate performance to the amorphous nature with high isotropy, which facilitates low energy migration paths and ion availability and can accommodate large changes in volume. This work suggests that amorphization represents a promising strategy for developing unconventional metal oxide electrode materials with high-rate performance.
    • The isotropic amorphous titanium dioxide allows for the accommodation of the strain of ion insertion along multiple directions, reducing the damage caused by volume expansion and contraction.
    • Two-dimensional nanosheet structure with large surface area ensures the effective infiltration of electrolyte. The larger specific surface area can provide more active sites, which is conducive to enhancing the contribution of interfacial capacitance.
    • Compared with other TiO2 anodes, amorphous TiO2 anode exhibits excellent specific capacities and high-rate performance. Even at current density as high as 6 A·g−1, a specific capacity of about 160 mA·h·g−1 can be obtained after 1000 cycles.

  • loading
  • [1]
    Li S Q, Wang K, Zhang G F, et al. Fast charging anode materials for lithium-ion batteries: Current status and perspectives. Adv. Funct. Mater., 2022, 32 (23): 2200796. doi: 10.1002/adfm.202200796
    [2]
    Li M, Lu J, Chen Z, et al. 30 years of lithium-ion batteries. Adv. Mater., 2018, 30 (33): 1800561. doi: 10.1002/adma.201800561
    [3]
    Wang W G, Liu Y, Wu X, et al. Advances of TiO2 as negative electrode materials for sodium-ion batteries. Adv. Mater. Technol., 2018, 3 (9): 1800004. doi: 10.1002/admt.201800004
    [4]
    Zhang Y Y, Tang Y X, Li W L, et al. Nanostructured TiO2-based anode materials for high-performance rechargeable lithium-ion batteries. ChemNanoMat, 2016, 2 (8): 764–775. doi: 10.1002/cnma.201600093
    [5]
    Yan X D, Wang Z H, He M, et al. TiO2 nanomaterials as anode materials for lithium-ion rechargeable batteries. Energy Technology, 2015, 3 (8): 801–814. doi: 10.1002/ente.201500039
    [6]
    Barnes P, Zuo Y, Dixon K, et al. Electrochemically induced amorphous-to-rock-salt phase transformation in niobium oxide electrode for Li-ion batteries. Nat. Mater., 2022, 21 (7): 795–803. doi: 10.1038/s41563-022-01242-0
    [7]
    Liu Y, Ding C F, Yan X D, et al. Interface-strain-confined synthesis of amorphous TiO2 mesoporous nanosheets with stable pseudocapacitive lithium storage. Chem. Eng. J., 2021, 420: 129894. doi: 10.1016/j.cej.2021.129894
    [8]
    Zhou M, Xu Y, Wang C L, et al. Amorphous TiO2 inverse opal anode for high-rate sodium ion batteries. Nano Energy, 2017, 31: 514–524. doi: 10.1016/j.nanoen.2016.12.005
    [9]
    Zhou M, Xu Y, Xiang J X, et al. Sodium-ion batteries: Understanding the orderliness of atomic arrangement toward enhanced sodium storage. Adv. Energy Mater., 2016, 6 (23): 1600448. doi: 10.1002/aenm.201600448
    [10]
    Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci., 2014, 7 (5): 1597–1614. doi: 10.1039/c3ee44164d
    [11]
    Xiong H, Yildirim H, Shevchenko E V, et al. Self-improving anode for lithium-ion batteries based on amorphous to cubic phase transition in TiO2 nanotubes. J. Phys. Chem. C, 2012, 116: 3181–3187. doi: 10.1021/jp210793u
    [12]
    Gao Q, Gu M, Nie A M, et al. Direct evidence of lithium-induced atomic ordering in amorphous TiO2 nanotubes. Chem. Mater., 2014, 26 (4): 1660–1669. doi: 10.1021/cm403951b
    [13]
    Liu Y, Ding C F, Xie P T, et al. Surface-reconstructed formation of hierarchical TiO2 mesoporous nanosheets with fast lithium-storage capability. Mater. Chem. Front., 2021, 5 (7): 3216–3225. doi: 10.1039/D1QM00065A
    [14]
    Yan S H, Abhilash K P, Tang L Y, et al. Research advances of amorphous metal oxides in electrochemical energy storage and conversion. Small, 2019, 15 (4): 1804371. doi: 10.1002/smll.201804371
    [15]
    Deng C J, Lau M L, Ma C R, et al. A mechanistic study of mesoporous TiO2 nanoparticle negative electrode materials with varying crystallinity for lithium ion batteries. J. Mater. Chem. A, 2020, 8: 3333–3343. doi: 10.1039/C9TA12499C
    [16]
    Wu J X, Liu H W, Tang A W, et al. Unexpected reversible crystalline/amorphous (de)lithiation transformations enabling fast (dis)charge of high-capacity anatase mesocrystal anode. Nano Energy, 2022, 102: 107715. doi: 10.1016/j.nanoen.2022.107715
    [17]
    Qi Y, Zeng X Q, Xiao L P, et al. An invisible hand: Hydrogen bonding guided synthesis of ultrathin two-dimensional amorphous TiO2 nanosheets. Sci. China Mater., 2022, 65 (11): 3017–3024. doi: 10.1007/s40843-022-2097-2
    [18]
    Li Q W, Wang H, Tang X F, et al. Electrical conductivity adjustment for interface capacitive-like storage in sodium-ion battery. Adv. Funct. Mater., 2021, 31 (24): 2101081. doi: 10.1002/adfm.202101081
    [19]
    Han J, Hirata A, Du J, et al. Intercalation pseudocapacitance of amorphous titanium dioxide@nanoporous graphene for high-rate and large-capacity energy storage. Nano Energy, 2018, 49: 354–362. doi: 10.1016/j.nanoen.2018.04.063
    [20]
    Lu C X, Li X Y, Liu R H, et al. Optimized Ti–O subcompounds and elastic expanded MXene interlayers boost quick sodium storage performance. Adv. Funct. Mater., 2023, 33 (19): 2215228. doi: 10.1002/adfm.202215228
    [21]
    Yang J P, Wang Y X, Li W, et al. Amorphous TiO2 shells: A vital elastic buffering layer on silicon nanoparticles for high-performance and safe lithium storage. Adv. Mater., 2017, 29 (48): 1700523. doi: 10.1002/adma.201700523
    [22]
    Ye J, Shea P, Baumgaertel A C, et al. Amorphization as a pathway to fast charging kinetics in atomic layer deposition-derived titania films for lithium ion batteries. Chem. Mater., 2018, 30 (24): 8871–8882. doi: 10.1021/acs.chemmater.8b04002
  • 加载中

Catalog

    Figure  1.  (a) Schematic illustration of the synthesis of a-TiO2 and c-TiO2. (b) SEM image of a-TiO2. (c) SEM image of a-TiO2 for details. (d) TEM image of a-TiO2. (e) HRTEM image of a-TiO2 with the inset of SAED pattern. (f) TEM image of c-TiO2. (g) HRTEM image of c-TiO2 with the inset of the SAED pattern.

    Figure  2.  Detailed characterizations of a-TiO2 and c-TiO2. (a) XRD patterns, (b) Raman spectra, (c) XPS Ti 2p spectra of a-TiO2 and c-TiO2, and (d) XPS O 1s spectra of a-TiO2 and c-TiO2.

    Figure  3.  (a) Detailed schemes of TiO2-based lithium-ion batteries. (b) CV curves at 0.1 mV·s−1. (c) Galvanostatic discharge/charge profiles of the 1st, 2nd and 10th cycles at 50 mA·g−1. (d) Rate performance. (e) Cycling performances of the a-TiO2 and c-TiO2 electrodes at 500 mA·g−1. (f) Cycling performances at 6 A·g−1.

    Figure  4.  (a–b) CV curves of the a-TiO2 and c-TiO2 electrodes at various scan rates in the range of 0.1 to 5.0 mV·s− 1. (c–d) The pseudocapacitive contribution at different scan rates. (e–f) CV curves with the capacitive fraction area (blue and orange regions) at a scan rate of 5.0 mV·s− 1.

    Figure  5.  (a) Li+ diffusion coefficient of a-TiO2 and c-TiO2 during discharging. (b) Li+ diffusion coefficient of a-TiO2 and c-TiO2 during charging. (c) Electrochemical impedance spectroscopy after 10, 50, and 100 cycles at a current density of 500 mA·g−1. (d) Electrochemical impedance spectroscopy after 10, 50, and 100 cycles at a current density of 2 A·g−1.

    [1]
    Li S Q, Wang K, Zhang G F, et al. Fast charging anode materials for lithium-ion batteries: Current status and perspectives. Adv. Funct. Mater., 2022, 32 (23): 2200796. doi: 10.1002/adfm.202200796
    [2]
    Li M, Lu J, Chen Z, et al. 30 years of lithium-ion batteries. Adv. Mater., 2018, 30 (33): 1800561. doi: 10.1002/adma.201800561
    [3]
    Wang W G, Liu Y, Wu X, et al. Advances of TiO2 as negative electrode materials for sodium-ion batteries. Adv. Mater. Technol., 2018, 3 (9): 1800004. doi: 10.1002/admt.201800004
    [4]
    Zhang Y Y, Tang Y X, Li W L, et al. Nanostructured TiO2-based anode materials for high-performance rechargeable lithium-ion batteries. ChemNanoMat, 2016, 2 (8): 764–775. doi: 10.1002/cnma.201600093
    [5]
    Yan X D, Wang Z H, He M, et al. TiO2 nanomaterials as anode materials for lithium-ion rechargeable batteries. Energy Technology, 2015, 3 (8): 801–814. doi: 10.1002/ente.201500039
    [6]
    Barnes P, Zuo Y, Dixon K, et al. Electrochemically induced amorphous-to-rock-salt phase transformation in niobium oxide electrode for Li-ion batteries. Nat. Mater., 2022, 21 (7): 795–803. doi: 10.1038/s41563-022-01242-0
    [7]
    Liu Y, Ding C F, Yan X D, et al. Interface-strain-confined synthesis of amorphous TiO2 mesoporous nanosheets with stable pseudocapacitive lithium storage. Chem. Eng. J., 2021, 420: 129894. doi: 10.1016/j.cej.2021.129894
    [8]
    Zhou M, Xu Y, Wang C L, et al. Amorphous TiO2 inverse opal anode for high-rate sodium ion batteries. Nano Energy, 2017, 31: 514–524. doi: 10.1016/j.nanoen.2016.12.005
    [9]
    Zhou M, Xu Y, Xiang J X, et al. Sodium-ion batteries: Understanding the orderliness of atomic arrangement toward enhanced sodium storage. Adv. Energy Mater., 2016, 6 (23): 1600448. doi: 10.1002/aenm.201600448
    [10]
    Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci., 2014, 7 (5): 1597–1614. doi: 10.1039/c3ee44164d
    [11]
    Xiong H, Yildirim H, Shevchenko E V, et al. Self-improving anode for lithium-ion batteries based on amorphous to cubic phase transition in TiO2 nanotubes. J. Phys. Chem. C, 2012, 116: 3181–3187. doi: 10.1021/jp210793u
    [12]
    Gao Q, Gu M, Nie A M, et al. Direct evidence of lithium-induced atomic ordering in amorphous TiO2 nanotubes. Chem. Mater., 2014, 26 (4): 1660–1669. doi: 10.1021/cm403951b
    [13]
    Liu Y, Ding C F, Xie P T, et al. Surface-reconstructed formation of hierarchical TiO2 mesoporous nanosheets with fast lithium-storage capability. Mater. Chem. Front., 2021, 5 (7): 3216–3225. doi: 10.1039/D1QM00065A
    [14]
    Yan S H, Abhilash K P, Tang L Y, et al. Research advances of amorphous metal oxides in electrochemical energy storage and conversion. Small, 2019, 15 (4): 1804371. doi: 10.1002/smll.201804371
    [15]
    Deng C J, Lau M L, Ma C R, et al. A mechanistic study of mesoporous TiO2 nanoparticle negative electrode materials with varying crystallinity for lithium ion batteries. J. Mater. Chem. A, 2020, 8: 3333–3343. doi: 10.1039/C9TA12499C
    [16]
    Wu J X, Liu H W, Tang A W, et al. Unexpected reversible crystalline/amorphous (de)lithiation transformations enabling fast (dis)charge of high-capacity anatase mesocrystal anode. Nano Energy, 2022, 102: 107715. doi: 10.1016/j.nanoen.2022.107715
    [17]
    Qi Y, Zeng X Q, Xiao L P, et al. An invisible hand: Hydrogen bonding guided synthesis of ultrathin two-dimensional amorphous TiO2 nanosheets. Sci. China Mater., 2022, 65 (11): 3017–3024. doi: 10.1007/s40843-022-2097-2
    [18]
    Li Q W, Wang H, Tang X F, et al. Electrical conductivity adjustment for interface capacitive-like storage in sodium-ion battery. Adv. Funct. Mater., 2021, 31 (24): 2101081. doi: 10.1002/adfm.202101081
    [19]
    Han J, Hirata A, Du J, et al. Intercalation pseudocapacitance of amorphous titanium dioxide@nanoporous graphene for high-rate and large-capacity energy storage. Nano Energy, 2018, 49: 354–362. doi: 10.1016/j.nanoen.2018.04.063
    [20]
    Lu C X, Li X Y, Liu R H, et al. Optimized Ti–O subcompounds and elastic expanded MXene interlayers boost quick sodium storage performance. Adv. Funct. Mater., 2023, 33 (19): 2215228. doi: 10.1002/adfm.202215228
    [21]
    Yang J P, Wang Y X, Li W, et al. Amorphous TiO2 shells: A vital elastic buffering layer on silicon nanoparticles for high-performance and safe lithium storage. Adv. Mater., 2017, 29 (48): 1700523. doi: 10.1002/adma.201700523
    [22]
    Ye J, Shea P, Baumgaertel A C, et al. Amorphization as a pathway to fast charging kinetics in atomic layer deposition-derived titania films for lithium ion batteries. Chem. Mater., 2018, 30 (24): 8871–8882. doi: 10.1021/acs.chemmater.8b04002

    Article Metrics

    Article views (573) PDF downloads(1406)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return