[1] |
Tertuliano O A, Greer, J R. The nanocomposite nature of bone drives its strength and damage resistance. Nat. Mater., 2016, 15 (11): 1195–1202. doi: 10.1038/nmat4719
|
[2] |
Reznikov N, Bilton M, Lari L, et al. Fractal-like hierarchical organization of bone begins at the nanoscale. Science, 2018, 360 (6388): eaao2189. doi: 10.1126/science.aao2189
|
[3] |
Duer M, Veis A. Bone mineralization: Water brings order. Nat. Mater., 2013, 12 (12): 1081–1082. doi: 10.1038/nmat3822
|
[4] |
DeRocher K A, Smeets P J M, Goodge B H, et al. Chemical gradients in human enamel crystallites. Nature, 2020, 583 (7814): 66–71. doi: 10.1038/s41586-020-2433-3
|
[5] |
Gordon L M, Cohen M J, MacRenaris K W, et al. Amorphous intergranular phases control the properties of rodent tooth enamel. Science, 2015, 347 (6223): 746–750. doi: 10.1126/science.1258950
|
[6] |
La Fontaine A, Zavgorodniy A, Liu H, et al. Atomic-scale compositional mapping reveals Mg-rich amorphous calcium phosphate in human dental enamel. Sci. Adv., 2016, 2 (9): e1601145. doi: 10.1126/sciadv.1601145
|
[7] |
Li L, Ortiz C. Biological design for simultaneous optical transparency and mechanical robustness in the shell of placuna placenta. Adv. Mater., 2013, 25 (16): 2344–2350. doi: 10.1002/adma.201204589
|
[8] |
Bayerlein B, Zaslansky P, Dauphin Y, et al. Self-similar mesostructure evolution of the growing mollusc shell reminiscent of thermodynamically driven grain growth. Nat. Mater., 2014, 13 (12): 1102–1107. doi: 10.1038/nmat4110
|
[9] |
Sun J, Bhushan B. Hierarchical structure and mechanical properties of nacre: A review. RSC Adv., 2012, 2 (20): 7617–7632. doi: 10.1039/C2RA20218B
|
[10] |
Liu Z, Meyers M A, Zhang Z, et al. Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications. Prog. Mater. Sci., 2017, 88: 467–498. doi: 10.1016/j.pmatsci.2017.04.013
|
[11] |
Eder M, Amini S, Fratzl P. Biological composites-complex structures for functional diversity. Science, 2018, 362 (6414): 543–547. doi: 10.1126/science.aat8297
|
[12] |
Quan H, Kisailus D, Meyers M A. Hydration-induced reversible deformation of biological materials. Nat. Rev. Mater., 2020, 6 (3): 264–283. doi: 10.1038/s41578-020-00251-2
|
[13] |
Amini S, Tadayon M, Idapalapati S, et al. The role of quasi-plasticity in the extreme contact damage tolerance of the stomatopod dactyl club. Nat. Mater., 2015, 14 (9): 943–950. doi: 10.1038/nmat4309
|
[14] |
Pro J W, Barthelat F. The fracture mechanics of biological and bioinspired materials. MRS Bull., 2019, 44 (1): 46–52. doi: 10.1557/mrs.2018.324
|
[15] |
Wegst U G, Bai H, Saiz E, et al. Bioinspired structural materials. Nat. Mater., 2015, 14 (1): 23–36. doi: 10.1038/nmat4089
|
[16] |
Ritchie R O. The conflicts between strength and toughness. Nat. Mater., 2011, 10 (11): 817–822. doi: 10.1038/nmat3115
|
[17] |
Mao L B, Gao H L, Yao H B, et al. Synthetic nacre by predesigned matrix-directed mineralization. Science, 2016, 354: 107–110. doi: 10.1126/science.aaf8991
|
[18] |
Munch E, Launey M E, Alsem D H, et al. Tough, bio-inspired hybrid materials. Science, 2008, 322 (5907): 1516–1520. doi: 10.1126/science.1164865
|
[19] |
Bouville F, Maire E, Meille S, et al. Strong, tough and stiff bioinspired ceramics from brittle constituents. Nat. Mater., 2014, 13 (5): 508–514. doi: 10.1038/nmat3915
|
[20] |
Gao H L, Chen S M, Mao L B, et al. Mass production of bulk artificial nacre with excellent mechanical properties. Nat. Commun., 2017, 8 (1): 287. doi: 10.1038/s41467-017-00392-z
|
[21] |
Yin Z, Hannard F, Barthelat F. Impact-resistant nacre-like transparent materials. Science, 2019, 364 (6447): 1260–1263. doi: 10.1126/science.aaw8988
|
[22] |
Le Ferrand H, Bouville F, Niebel T P, et al. Magnetically assisted slip casting of bioinspired heterogeneous composites. Nat. Mater., 2015, 14: 1172–1179. doi: 10.1038/nmat4419
|
[23] |
Torres A M, Trikanad A A, Aubin C A, et al. Bone-inspired microarchitectures achieve enhanced fatigue life. Proc. Natl. Acad. Sci. U. S. A., 2019, 116 (49): 24457–24462. doi: 10.1073/pnas.1905814116
|
[24] |
Kim Y Y, Ganesan K, Yang P, et al. An artificial biomineral formed by incorporation of copolymer micelles in calcite crystals. Nat. Mater., 2011, 10 (11): 890–896. doi: 10.1038/nmat3103
|
[25] |
Pokroy B, Quintana J P, Caspi E N, et al. Anisotropic lattice distortions in biogenic aragonite. Nat. Mater., 2004, 3 (12): 900–902. doi: 10.1038/nmat1263
|
[26] |
Polishchuk I, Bracha A A, Bloch L, et al. Coherently aligned nanoparticles within a biogenic single crystal: A biological prestressing strategy. Science, 2017, 358 (6368): 1294–1298. doi: 10.1126/science.aaj2156
|
[27] |
Rockwood D N, Preda R C, Yucel T, et al. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc., 2011, 6 (10): 1612–1631. doi: 10.1038/nprot.2011.379
|
[28] |
Lloyd J A, Ng S H, Davis T J, et al. Size selective adsorption of gold nanoparticles by electrostatic assembly. J. Phys. Chem. C, 2017, 121 (4): 2437–2443. doi: 10.1021/acs.jpcc.6b10218
|
[29] |
Ichikawa R, Kajiyama S, Iimura M, et al. Tuning the c-axis orientation of calcium phosphate hybrid thin films using polymer templates. Langmuir, 2019, 35 (11): 4077–4084. doi: 10.1021/acs.langmuir.8b04318
|
[30] |
Xu J, Yan C, Zhang F, et al. Testing the cation-hydration effect on the crystallization of Ca-Mg-CO3 systems. Proc. Natl. Acad. Sci. U. S. A., 2013, 110 (44): 17750–17755. doi: 10.1073/pnas.1307612110
|
[31] |
Kim Y Y, Ganesan K, Yang P, et al. An artificial biomineral formed by incorporation of copolymer micelles in calcite crystals. Nat. Mater., 2011, 10 (11): 890–896. doi: 10.1038/nmat3103
|
[32] |
Huang W Q, Huang Z M, Cheng H Q, et al. Electronic states and curved surface effect of silicon quantum dots. Appl. Phys. Lett., 2012, 101 (17): 171601. doi: 10.1063/1.4761945
|
[33] |
Meng Y F, Zhu Y B, Zhou L C, et al. Artificial nacre with high toughness amplification factor: Residual stress-engineering sparks enhanced extrinsic toughening mechanisms. Adv. Mater., 2021, 34: 2108267. doi: 10.1002/adma.202108267
|
[34] |
Kulak A N, Semsarilar M, Kim Y Y, et al. One-pot synthesis of an inorganic heterostructure: Uniform occlusion of magnetite nanoparticles within calcite single crystals. Chem. Sci., 2014, 5 (2): 738–743. doi: 10.1039/C3SC52615A
|
[35] |
Kim Y Y, Darkins R, Broad A, et al. Hydroxyl-rich macromolecules enable the bio-inspired synthesis of single crystal nanocomposites. Nat. Commun., 2019, 10 (1): 5682. doi: 10.1038/s41467-019-13422-9
|
Figure 2. Microstructure comparison between natural nacre and artificial nacre. (a) Abalone nacre. (b, c) Artificial nacre: (b) QDN and (c) FeN. The inset in (b) shows the PL of the original QDs. (d–f) Fracture surface of the (d) abalone nacre, (e) QDN, and (f) FeN. (g–i) Aragonitic layer of the (g) abalone nacre, (h) the QDN, and (i) FeN. (j–l) Enlarged micrographs of the aragonite platelets of the (j) abalone nacre, (k) QDN, and (l) FeN.
Figure 5. Influence of the sizes and surface charges of the NPs on the microstructures of the artificial nacre. (a–h) Fracture surface of the artificial nacre: (a) FeN10−, (b) FeN10+, (c) FeN25−, (d) FeN25+, (e) FeN80−, (f) FeN80+, (g) FeN150−, and (h) FeN350−. FeN10− is the artificial nacre incorporated with ~ 10 nm negatively charged NPs.
Figure 6. Morphology of the NPs with different surface properties in the solution. (a–h) SEM images of the dried mineralizing solution samples with (a) Fe3O4[10]− NPs, (b) Fe3O4[25]− NPs, (c) Fe3O4[80]− NPs, (d) Fe3O4[150]− NPs, (e) Fe3O4[350]− NPs, (f) Fe3O4[10]+ NPs, (g) Fe3O4[25]+ NPs, and (h) Fe3O4[80]+ NPs. Fe3O4[10]− denotes the negatively charged Fe3O4 NPs with approximately 10 nm diameter.
[1] |
Tertuliano O A, Greer, J R. The nanocomposite nature of bone drives its strength and damage resistance. Nat. Mater., 2016, 15 (11): 1195–1202. doi: 10.1038/nmat4719
|
[2] |
Reznikov N, Bilton M, Lari L, et al. Fractal-like hierarchical organization of bone begins at the nanoscale. Science, 2018, 360 (6388): eaao2189. doi: 10.1126/science.aao2189
|
[3] |
Duer M, Veis A. Bone mineralization: Water brings order. Nat. Mater., 2013, 12 (12): 1081–1082. doi: 10.1038/nmat3822
|
[4] |
DeRocher K A, Smeets P J M, Goodge B H, et al. Chemical gradients in human enamel crystallites. Nature, 2020, 583 (7814): 66–71. doi: 10.1038/s41586-020-2433-3
|
[5] |
Gordon L M, Cohen M J, MacRenaris K W, et al. Amorphous intergranular phases control the properties of rodent tooth enamel. Science, 2015, 347 (6223): 746–750. doi: 10.1126/science.1258950
|
[6] |
La Fontaine A, Zavgorodniy A, Liu H, et al. Atomic-scale compositional mapping reveals Mg-rich amorphous calcium phosphate in human dental enamel. Sci. Adv., 2016, 2 (9): e1601145. doi: 10.1126/sciadv.1601145
|
[7] |
Li L, Ortiz C. Biological design for simultaneous optical transparency and mechanical robustness in the shell of placuna placenta. Adv. Mater., 2013, 25 (16): 2344–2350. doi: 10.1002/adma.201204589
|
[8] |
Bayerlein B, Zaslansky P, Dauphin Y, et al. Self-similar mesostructure evolution of the growing mollusc shell reminiscent of thermodynamically driven grain growth. Nat. Mater., 2014, 13 (12): 1102–1107. doi: 10.1038/nmat4110
|
[9] |
Sun J, Bhushan B. Hierarchical structure and mechanical properties of nacre: A review. RSC Adv., 2012, 2 (20): 7617–7632. doi: 10.1039/C2RA20218B
|
[10] |
Liu Z, Meyers M A, Zhang Z, et al. Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications. Prog. Mater. Sci., 2017, 88: 467–498. doi: 10.1016/j.pmatsci.2017.04.013
|
[11] |
Eder M, Amini S, Fratzl P. Biological composites-complex structures for functional diversity. Science, 2018, 362 (6414): 543–547. doi: 10.1126/science.aat8297
|
[12] |
Quan H, Kisailus D, Meyers M A. Hydration-induced reversible deformation of biological materials. Nat. Rev. Mater., 2020, 6 (3): 264–283. doi: 10.1038/s41578-020-00251-2
|
[13] |
Amini S, Tadayon M, Idapalapati S, et al. The role of quasi-plasticity in the extreme contact damage tolerance of the stomatopod dactyl club. Nat. Mater., 2015, 14 (9): 943–950. doi: 10.1038/nmat4309
|
[14] |
Pro J W, Barthelat F. The fracture mechanics of biological and bioinspired materials. MRS Bull., 2019, 44 (1): 46–52. doi: 10.1557/mrs.2018.324
|
[15] |
Wegst U G, Bai H, Saiz E, et al. Bioinspired structural materials. Nat. Mater., 2015, 14 (1): 23–36. doi: 10.1038/nmat4089
|
[16] |
Ritchie R O. The conflicts between strength and toughness. Nat. Mater., 2011, 10 (11): 817–822. doi: 10.1038/nmat3115
|
[17] |
Mao L B, Gao H L, Yao H B, et al. Synthetic nacre by predesigned matrix-directed mineralization. Science, 2016, 354: 107–110. doi: 10.1126/science.aaf8991
|
[18] |
Munch E, Launey M E, Alsem D H, et al. Tough, bio-inspired hybrid materials. Science, 2008, 322 (5907): 1516–1520. doi: 10.1126/science.1164865
|
[19] |
Bouville F, Maire E, Meille S, et al. Strong, tough and stiff bioinspired ceramics from brittle constituents. Nat. Mater., 2014, 13 (5): 508–514. doi: 10.1038/nmat3915
|
[20] |
Gao H L, Chen S M, Mao L B, et al. Mass production of bulk artificial nacre with excellent mechanical properties. Nat. Commun., 2017, 8 (1): 287. doi: 10.1038/s41467-017-00392-z
|
[21] |
Yin Z, Hannard F, Barthelat F. Impact-resistant nacre-like transparent materials. Science, 2019, 364 (6447): 1260–1263. doi: 10.1126/science.aaw8988
|
[22] |
Le Ferrand H, Bouville F, Niebel T P, et al. Magnetically assisted slip casting of bioinspired heterogeneous composites. Nat. Mater., 2015, 14: 1172–1179. doi: 10.1038/nmat4419
|
[23] |
Torres A M, Trikanad A A, Aubin C A, et al. Bone-inspired microarchitectures achieve enhanced fatigue life. Proc. Natl. Acad. Sci. U. S. A., 2019, 116 (49): 24457–24462. doi: 10.1073/pnas.1905814116
|
[24] |
Kim Y Y, Ganesan K, Yang P, et al. An artificial biomineral formed by incorporation of copolymer micelles in calcite crystals. Nat. Mater., 2011, 10 (11): 890–896. doi: 10.1038/nmat3103
|
[25] |
Pokroy B, Quintana J P, Caspi E N, et al. Anisotropic lattice distortions in biogenic aragonite. Nat. Mater., 2004, 3 (12): 900–902. doi: 10.1038/nmat1263
|
[26] |
Polishchuk I, Bracha A A, Bloch L, et al. Coherently aligned nanoparticles within a biogenic single crystal: A biological prestressing strategy. Science, 2017, 358 (6368): 1294–1298. doi: 10.1126/science.aaj2156
|
[27] |
Rockwood D N, Preda R C, Yucel T, et al. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc., 2011, 6 (10): 1612–1631. doi: 10.1038/nprot.2011.379
|
[28] |
Lloyd J A, Ng S H, Davis T J, et al. Size selective adsorption of gold nanoparticles by electrostatic assembly. J. Phys. Chem. C, 2017, 121 (4): 2437–2443. doi: 10.1021/acs.jpcc.6b10218
|
[29] |
Ichikawa R, Kajiyama S, Iimura M, et al. Tuning the c-axis orientation of calcium phosphate hybrid thin films using polymer templates. Langmuir, 2019, 35 (11): 4077–4084. doi: 10.1021/acs.langmuir.8b04318
|
[30] |
Xu J, Yan C, Zhang F, et al. Testing the cation-hydration effect on the crystallization of Ca-Mg-CO3 systems. Proc. Natl. Acad. Sci. U. S. A., 2013, 110 (44): 17750–17755. doi: 10.1073/pnas.1307612110
|
[31] |
Kim Y Y, Ganesan K, Yang P, et al. An artificial biomineral formed by incorporation of copolymer micelles in calcite crystals. Nat. Mater., 2011, 10 (11): 890–896. doi: 10.1038/nmat3103
|
[32] |
Huang W Q, Huang Z M, Cheng H Q, et al. Electronic states and curved surface effect of silicon quantum dots. Appl. Phys. Lett., 2012, 101 (17): 171601. doi: 10.1063/1.4761945
|
[33] |
Meng Y F, Zhu Y B, Zhou L C, et al. Artificial nacre with high toughness amplification factor: Residual stress-engineering sparks enhanced extrinsic toughening mechanisms. Adv. Mater., 2021, 34: 2108267. doi: 10.1002/adma.202108267
|
[34] |
Kulak A N, Semsarilar M, Kim Y Y, et al. One-pot synthesis of an inorganic heterostructure: Uniform occlusion of magnetite nanoparticles within calcite single crystals. Chem. Sci., 2014, 5 (2): 738–743. doi: 10.1039/C3SC52615A
|
[35] |
Kim Y Y, Darkins R, Broad A, et al. Hydroxyl-rich macromolecules enable the bio-inspired synthesis of single crystal nanocomposites. Nat. Commun., 2019, 10 (1): 5682. doi: 10.1038/s41467-019-13422-9
|