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Graphical abstract

Simulated liquid methanol by machine learning force field.

Public summary

m We develop a machine learning force field for liquid methanol at the level of hybrid functional revPBEO plus dispersion
correction.

m Machine learning molecular dynamics simulations are orders of magnitude faster than ab initio molecular dynamics sim-
ulations.

m Our machine learning force field predicts the radial distribution functions, self-diffusion coefficients and hydrogen bond-
ing features in reasonably good agreement with the experimental data.
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Abstract: As the simplest hydrogen-bonded alcohol, liquid methanol has attracted intensive experimental and theoretical
interest. However, theoretical investigations on this system have primarily relied on empirical intermolecular force fields
or ab initio molecular dynamics with semilocal density functionals. Inspired by recent studies on bulk water using increas-
ingly accurate machine learning force fields, we report a new machine learning force field for liquid methanol with a hy-
brid functional revPBEO plus dispersion correction. Molecular dynamics simulations on this machine learning force field
are orders of magnitude faster than ab initio molecular dynamics simulations, yielding the radial distribution functions, self-
diffusion coefficients, and hydrogen bond network properties with very small statistical errors. The resulting structural and
dynamical properties are compared well with the experimental data, demonstrating the superior accuracy of this machine
learning force field. This work represents a successful step toward a first-principles description of this benchmark system

and showcases the general applicability of the machine learning force field in studying liquid systems.
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1 Introduction

Methanol (CH;OH), the simplest alcohol, is widely em-
ployed as a reagent, solvent, and chemical raw material. Due
to its high energy density and ease of transportation, methanol
has also emerged in recent years as a promising next-genera-
tion energy storage material’”. An in-depth understanding of
the structure and dynamics of liquid methanol is therefore
highly desirable. Intermolecular hydrogen bonds are pivotal
features in water and liquid alcohol such as methanol and
largely determine the corresponding molecular chain struc-
ture. In contrast to bulk water, where each water molecule
features four hydrogen bonds (H-bonds) with neighboring
molecules, the presence of a hydrophobic methyl (CH;) group
in methanol reduces the number of available hydrogen bond-
ing sites and thus the average number of H-bonds on each
methanol molecule®*. Furthermore, methanol molecules are
known to be less polar than water molecules with generally
weaker H-bonds. The asymmetry of the molecular structure,
amphiphilicity, and reduced number of H-bonds contribute to
the distinct properties and behavior of liquid methanol com-
pared to those of liquid water.

Over the past few decades, extensive experiments (such as
neutron diffraction” " X-ray diffraction’®, IR", Raman® and
ultrafasttime-resolved spectroscopy” ') have been conducted to
unravel the diverse structural, dynamical, and spectroscopic
properties of liquid methanol. Theoretically, molecular
dynamics (MD) simulations have also been widely applied to
understand these experimental observations. Such MD
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simulations have often been performed with classical force
fields (CFFs) parameterized with physically inspired empiric-
al functions for universal liquid systems, including the widely
used OPLS™ and its variants!*'”? or some universal force
fields designed for organic molecules'”. The pioneering
OPLS force field, which was originally proposed by Jor-
gensen!”, was subsequently adjusted by Haughney et al."! to
reproduce experimental data for various properties of methan-
ol. More recently, Gonzalez-Salgado and Vega®™ incorpor-
ated solid-phase properties and solid—liquid equilibrium to re-
fine the OPLS/2016 force field, which outperformed earlier
versions. These CFFs were applied to study pure liquid meth-
anol, methanol solutions”", and methanol-water mixed solu-
tions™, achieving satisfactory agreement with some experi-
ments. Despite their super efficiency, CFFs often assume mo-
lecular rigidity and adopt the harmonic approximation, thus
lose reliability in heavily distorted molecular structures and
bond forming/breaking processes.

On the other hand, ab initio molecular dynamics (AIMD)
simulations based on on-the-fly electronic structure calcula-
tions at the density functional theory (DFT) level are in prin-
ciple more suitable for studying complex systems from first
principles. Since the pioneering investigation by Tsuchida et
al.” a great deal of AIMD studies on methanol and related
systems have been reported .. For example, Pagliai et al.”!
employed the Car—Parrinello molecular dynamics (CPMD)
approach to investigate the hydrogen bond dynamics, molecular
dipole moment and infrared spectra of deuterated methanol.
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Their results showed good agreement with the experimental
data. Sieffert et al.”® compared three density functionals with
or without dispersion corrections in Born—Oppenheimer MD
(BOMD) for predicting multiple properties. It was argued that
the B97%" functional outperforms the widely used BLYPF*
functional for methanol. Additionally, Saija and
coworkers™*! investigated the changes in the structural and
spectroscopic properties of liquid methanol under an external
electric field. Although the AIMD method is powerful, its
huge computational cost limits the simulation length and the
system size, hindering its applicability for predicting certain
properties. For instance, an accurate calculation of self-diffu-
sion coefficients typically requires a simulation time of at
least several hundred picoseconds””. Moreover, these AIMD
studies were limited to using generalized gradient approxima-
tion (GGA)-based density functionals.

In recent years, the rapid development of machine learning
force fields (MLFFs) has revolutionized the field of molecu-
lar modeling, allowing accurate and efficient calculations of
thermodynamics®, spectroscopy™ ! and  chemical
reactions™”. By learning the relationship between structural
descriptors and energies (sometimes including other proper-
ties) with highly flexible analytical functions, for example,
neural networks (NNs), MLFFs can be used to faithfully re-
place electronic structure calculations and speed up AIMD
simulations by several orders of magnitude while retaining
first-principles accuracy. In this respect, many MLFFs have
been applied to study liquid water™~", which has been re-
garded as a prototypical system that showscases the power of
MLFFs. Surprisingly, there are very few MLFF applications
to liquid methanol® %, In fact, methanol is a common system
for validating many universal CFFs!""***. Given the similar-
ity and dissimilarity between methanol and water, as well as
the abundant experimental data available, the former should
serve as another important benchmark for evaluating MLFFs
in condensed-phase systems. Although some MLFFs have
been attempted for methanol clusters® !, Maldonado et al.®"
reported a many-body gradient-domain machine learning
(mbGDML) potential from methanol clusters to bulk methan-
ol at the MP2 level. However, the simulated radial distribu-
tion functions of liquid methanol deviate largely from the ex-
perimental data.

In the present work, we report a new MLFF for liquid
methanol. Inspired by successful studies on the ab initio ther-
modynamics of water™ ", we carried out electronic structure
calculations with a hybrid functional revPBEOQ plus disper-
sion correction instead of the GGA-based functional that was
commonly used in previous work for liquid methanol. MD
simulations of this MLFF (hereafter referred to as machine
learning MD or MLMD) yield converged radial distribution
functions, self-diffusion coefficients, and H-bond properties.
The remainder of this article is organized as follows. The next
section describes the methodology, including the computa-
tional details of DFT, the neural network approach, data
sampling, and MD simulations. Subsequently, the structural
and dynamic properties are compared with the experimental
data and previous theoretical results in Section 3. The final
section concludes.

2 Method

2.1 Density functional theory calculations

The simulated methanol system consists of 32 CH;OH mo-
lecules in a periodically repeated cubic box with a length of
L =12.93 A, as shown in Fig. 1a, which corresponds to the
experimental density of 0.787 g-cm™ at room temperature. All
DFT calculations were conducted using the Quickstep™ mod-
ule in the CP2K 7.1 package, which employs a mixed
Gaussian and plane wave (GPW)""! basis set. Following re-
cent studies for water, we used a hybrid revPBE0*? function-
al that contains 25% exact exchange and included the
Grimme D3 correction. This revPBEO functional was ap-
plied in AIMD and MLMD simulations for water that repro-
duce well the experimental RDFs, self-diffusion
coefficient®), and thermodynamics®. Goedecker—Teter—
Hutter (GTH) pseudopotentials " were used to describe the
core electrons. A molecularly optimized triple-{ Gaussian
basis set augmented with two polarization functions (TZV2P-
MOLOPT)"** was employed to expand the Kohn—Sham orbit-
als. The plane wave expansion was truncated at 450 Ry. To
accelerate the computations of hybrid functionals in periodic
systems, we utilized the auxiliary density matrix method
(ADMM)“’I. Additionally, we chose the orbital transforma-
tion (OT)" method to optimize the wave function at each
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Fig. 1. (a) A snapshot of the simulation cell of liquid methanol containing 32 CH;OH molecules. (b) Potential energies and (c) forces obtained from the
comparison of the EANN potential and DFT results. The energy zero is defined as the mean potential energy of the AIMD trajectory.

0603-2

DOI: 10.52396/JUSTC-2024-0031
JUSTC, 2024, 54(6): 0603


https://doi.org/10.52396/JUSTC-2024-0031
https://doi.org/10.52396/JUSTC-2024-0031
https://doi.org/10.52396/JUSTC-2024-0031
https://doi.org/10.52396/JUSTC-2024-0031
https://doi.org/10.52396/JUSTC-2024-0031

Zzsrg "

Qian et al.

step using a self-consistent field (SCF) convergence criterion
of 1x107 a.u.

2.2 Embedded atom neural network approach

The calculated DFT energies and forces were trained to an
analytical MLFF using the embedded atom neural network
(EANN) approach® implemented in the open-source
REANN package. This approach is based on the atomistic
neural network architecture and is generally applicable to mo-
lecular, condensed-phase and interfacial systems!. It decom-
poses the total energy of a system into the sum of individual
atomic contributions, and each atomic energy (E;) is depend-
ent on its local environment, which is determined by a series
of embedded atom density (EAD) features (p;). The EAD fea-
ture is formally expressed as the square of a linear combina-
tion of atomic orbitals. For efficiency, these atomic orbitals
are practically contracted Gaussian functions expanded in
terms of Gaussian primitives (¢}, , (7)), leading to

2
Ltly+l=L L) Nel o e R
pi = Z/A,/‘J: T Zc.fzdn Pl NIAGHIE (1)

j# o om=1

where 7ii represents the vector pointing from the central atom
i to the neighboring atom j, r; is its norm, N, is the number
of neighboring atoms within the cutoff radius (r.), ¢; is an
element-dependent orbital coefficient, d”' is the contraction
coefficient of a Gaussian primitive, and n,,,. is the total num-
ber of contracted Gaussian functions. The EAD feature con-
tinuously decays to O at r,, which is ensured by the cosine
cutoff function f;(r;). The Gaussian primitive is defined by

its center (r,), width (o) and angular momentum
(L=1+1,+1),
2
- I Iy L. |ri/_rf
Proat, () = (x;)"(v;)" (z;) "exp T | 2

where L= 0, 1, or 2, resembling the s, p, or d orbitals, respect-
ively. In practice, we chose 7. =6 A, n,,.. =8, L =0, 1, and 2,
yielding 84 EAD features in total. Each atomic neural net-
work contains two hidden layers with 32 neurons in each lay-
er. Once the EANN architecture is determined, all the hyper-
parameters are optimized during the training process along
with the NN parameters, leading to an end-to-end representa-
tion.

2.3 Details of the MLFF construction

The dataset for the MLFF construction was generated as fol-
lows. Most of the data (15000 configurations) were sampled
from an AIMD trajectory of 30 ps (detailed in the next sec-
tion) every 2 fs and thermostated at 300 K. Five hundred
points from these AIMD data were randomly selected as
seeds to quickly train an initial EANN potential. This poten-
tial was then used in an efficient and iterative sampling pro-
cedure, aiming to find possible “holes” in the configuration
space of dynamical interest and add new points to fix them.
To this end, MLMD simulations on this EANN potential were
run with LAMMPSU to produce an extensive set of candid-
ate points. We trained two extra EANN potentials (with dif-
ferent initial parameters) to estimate the uncertainty of these
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candidates. Because any MLFF tends to provide a reliable
prediction at the position where training data exist, a large en-
ergy difference (AE) given by the two EANN potentials for a
candidate point indicates that the prediction in this region is
not good enough. This point should then be added into the
training dataset. Based on this concept, in each iteration, the
ten points with the largest energy differences were selected
for additional DFT calculations to augment the dataset. New
EANN potentials were trained with the updated dataset to re-
peat this procedure until no new data could be selected from
existing MLMD trajectories within our criterion (AE > 0.1
eV). New MLMD simulations were then performed on the
latest EANN potential to keep the data selection running. This
treatment minimizes the effort to run MLMD simulations in
the iterative data selection. We collected ~3700 points in this
way to be merged into the preselected AIMD dataset, yield-
ing a full set of 18751 points. To train the final MLFF for
property predictions, the full dataset was randomly divided
into a training set and a validation set at a ratio of 9 : 1. The
weighting ratio of the energy and force was initially set to
1 2 100 and dynamically adjusted during the training process
tol:1.

2.4 AIMD and MLMD setups

All MD simulations were conducted under the canonical en-
semble (NVT) under ambient conditions (7 = 300 K, P =1
bar) with periodic boundary conditions. The equations of mo-
tion were integrated with a time step of 0.5 fs. A Nose-
Hoover chain™’ thermostat with a chain length of 3 and a
time constant of 500 fs was employed to control the temperat-
ure. AIMD was performed using CP2K, in which the equilib-
ration run was imposed by ~30 ps, followed by a 20 ps pro-
duction run for trajectory analysis. MLMD simulations were
performed using the LAMMPS package. The system was first
equilibrated for 50 ps, followed by subsequent 400 ps for the
evaluation of the time correlation functions. To reduce the
statistical uncertainties and explore the phase space more
thoroughly, five independent simulations were carried out,
resulting in a cumulative trajectory duration of 2 ns. This en-
ables much better statistics of MLMD results compared to
AIMD results. Postprocessing of the RDFs and mean square
displacement (MSD) were performed by Trajectory Analyzer
and Visualizer (TRAVIS)"" software. The hydrogen bond
behavior was analyzed by an in-house Fortran code. Molecu-
lar visualization was implemented by Visual Molecular Dy-
namics (VMD)™ program.

3 Results and discussion

3.1 Validation of the MLFF

Let us first check the accuracy of the EANN potential. Fig. 1b
and ¢ compare the predictions of the final EANN potential for
energies and atomic forces over the entire dataset with DFT
values. Here, the energy zero is defined by the mean poten-
tial energy of the AIMD trajectory. The root-mean-square-
errors (RMSEs) of the EANN potential for the training/valid-
ation set are 0.77/0.78 meV per atom for energies and
32.8/32.9 meV-A™" for forces. In addition, we selected anoth-
er 1000 configurations by further propagating the AIMD tra-
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jectory for an additional 2 ps (every 2 fs), which was not used
in the training process, as an independent test set. The test
RMSEs for energies and atomic forces are 0.39 meV per atom
and 33.2 meV-A", respectively, which are comparable to the
training errors. This finding verifies the accuracy of the
EANN potential in subsequent MLMD simulations.

3.2 Radial distribution functions

Radial distribution functions (RDFs) are a statistical charac-
terization of the complex structure of condensed phase mater-
ials. Each peak in the RDF corresponds to an average dis-
tance between two elements of a collection of solvent shell
structures. For liquid methanol, there are six RDFs for O-O
(800)» O-H (gow), H-H (gun), C-C (gcc); C-O (gco), and
C-H (gcy), which were calculated from AIMD and MLMD
simulations and are compared in Fig. 2. In comparison, the
AIMD and MLMD results are in excellent agreement with
one another, again validating the reliability of the EANN po-
tential. The slight deviations are most likely due to the relat-
ively short simulation time of AIMD compared to that of
MLMD simulations. The experimental RDFs derived from
neutron diffraction data are also compared in Fig. 2. Specific-
ally, the agreement between our MLMD and experimental
results is excellent for the O—O RDF and reasonably good for
the C—O RDF with respect to the peak position and intensity.
However, in theoretical RDFs involving hydrogen atoms, es-
pecially for goy and gy, the first peaks appear higher than the
experimental values. This disagreement has been previously
observed in classical MD simulations for liquid water, which
was largely ascribed to nuclear quantum effects (NQEs) that
make the hydrogen bond network less compact®’. The ab-
sence of NQEs in current MLMD simulations is likely re-
sponsible for the overstructure of the nearest neighbor shell
for methanol. Improvements can be made by performing path-
integral molecular dynamics (PIMD) simulations on the
MLFF, which will be discussed in a forthcoming work.
Notably, to diminish the influence of NQEs, previous
AIMD studies have often been conducted on fully deuterated
methanol (CD;OD)***. Even so, as shown in Fig. 2, our
MLMD results for goy and gy exhibit a prominent decrease
in the first peaks compared to the corresponding AIMD res-
ults for gop and gpp at the BLYP-D3 and B97-D2 levels™.
This suggests that the GGA density functional does not accur-
ately describe the structure of liquid methanol. On the other
hand, the present EANN potential at the revPBE0-D3 level
also significantly outperforms the mbGDML potential at the
MP2 level with respect to O—O, O—H, and H-H RDFs. The
latter results obviously underestimate the structures of the
first hydrogen bonding shell, yielding much lower peaks than
those of the experiment even without the inclusion of NQEs.
Noticeably, the calculated C—C RDF shows the largest dis-
agreement with the experimental RDF, which is narrower and
sharper than the MLFF prediction. The same failure also ap-
peared in previous MD results ***", which underscores the
great challenge in accurately describing the weak interaction
between methyl groups in bulk methanol with DFT. A higher
wave function-based level of ab initio calculations is prob-
ably needed. Moreover, the experimental site-site RDFs
shown here were indirectly derived through an empirical
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potential structure refinement (EPSR) computer simulation of
neutron diffraction data®*, which cannot avoid some arbitrari-
ness. Further investigations are necessary to resolve this dis-
agreement.

3.3 Self-diffusion coefficient

The self-diffusion coefficient is another important property of
liquid systems. In theory, this quantity can be estimated by
the mean square displacement (MSD) of the molecular center,
which is related to the molecular diffusion constant (D) via
the Einstein equation:

6D = 133% ([n o+ D= r )T, ?3)
where r;(f) denotes the position of the centroid of a molecule
i relative to the system center of mass at a correlation time ¢,
while the brackets average over all possible time origins (Z)
and molecules.

To obtain a reliable estimate of D, we must choose an ap-
propriate time interval where the slope of the MSD with re-
spect to time becomes stable. Fig. 3 shows the MSDs of both
the oxygen atom and the centroid of the methanol molecule as
a function of the correlation time ¢ along a long MLMD tra-
jectory. After 1 ps, the two MSD curves are almost indistin-
guishable. Consequently, the oxygen atom in methanol is em-
ployed as the observing particle instead of the molecular
centroid when evaluating self-diffusion coefficients, as in
some previous studies™. Moreover, the diffusion of methan-
ol molecules starts to follow the Einstein relationship, and the
MSD becomes linearly proportional to the correlation time
after 25 ps. A longer correlation time will enable better stat-
istical analysis. Specifically, a time interval between 100 and
200 ps was chosen to evaluate the slope. The self-diffusion
coefficient D = (2.20+0.20) x 10°m?/s was obtained by fit-
ting Eq. (3) (R*>0.999) and taking the average over five
MLMD trajectories.

The calculated self-diffusion coefficient is compared with
previous theoretical and experimental results in Table 1. As
mentioned above, the calculation of the self-diffusion coeffi-
cient is more demanding than that of the RDF. Existing theor-
etical results were mainly based on MD simulations with
CFFs. The current MLMD result agrees best with the experi-
mental value at room temperature, outperforming MD results
based on CFFs and the CPMD result at the BLYP level™.
This demonstrates the high accuracy of the newly construc-
ted MLFF.

3.4 Hydrogen bond analysis

The hydrogen bond network is a unique characteristic of con-
densed phase systems consisting of polar molecules contain-
ing hydrogen atoms. To quantify the formation of H-bonds,
following Ref. [24], we employed three geometric criteria: (i)
Fuown < 2.6A:; (ii) ro.0 < 3.5A; and (iii) ZHO---O < 30°, as il-
lustrated in Fig. 4a. Using these criteria, H-bond analysis was
performed for each frame along all trajectories. Fig. 4b shows
the spatial distribution of H-bonds as a function of ZHO---O
and ryo.4. Clearly, the formation of hydrogen bonds is fo-
cused in the range of 1.5 A < ryo.y <2.2 A and ZHO---O <
30°. The distribution peaks are at ryo.y = 1.82 A and
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Fig. 2. Comparison of the calculated intermolecular radial distribution functions of (a) O-O, (b) O-H, (¢) H-H, (d) C-C, (¢) C-O, and (f) C-H in bulk
methanol from current AIMD and MLMD simulations at the revPBE0-D3 level with the experimental data”™* at room temperature, which are taken from
neutron diffraction results fitted by the empirical potential structure refinement (EPSR) computer simulation. Additionally, previous AIMD results at the
BLYP-D3 and B97-D2 levels for deuterated methanol and mbGDML results at the MP2 level whenever available are shown.

(HO---O= 8.8°, which is consistent with the physical picture H-bond network.

that the hydrogen bond favors a nearly linear geometry and a The average number of H-bonds per molecule (n) is a
more extended bond length than the covalent bond. This peak metric of the average strength of hydrogen bonding interac-
position also coincides with the first peak position of ggy tions, which can be either estimated by the geometric criteria

(~1.85 A), corresponding to the closest neighbor shell in the above or calculated by integrating the O—H RDF up to the
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Fig. 3. A log-log plot of the MSD with respect to the correlation time of
the O atom and the centroid of methanol was used to identify the “middle”
region. The blue dashed line indicates a slope of 1 (target diffusive re-
gime).

Table 1. Comparison of liquid methanol diffusion coefficients obtained
from experiments and various theoretical studies.

Method Diffusion coefficients (10~ m*/s)
Expt!* 2.42+0.05
CPMD-BLYP™! 2.0+£0.6
AMOEBA® 1.9
OPLS/2016"" 2.72
This work: MLMD-revPBEO+D3 2.20+0.20

minimum between the first and second peaks. The two kinds
of results are summarized in Table 2. Our results agree well
with both the experimental and previous simulation results.
Similar to previous findings®**", the geometry-defined (nyz)
falls in the range of 1.8—1.9, while the RDF-integrated (7s)
is slightly larger within 1.9-2.0. This value does not seem to
be very sensitive to the force field, indicating that the methan-
ol molecule forms, on average, two hydrogen bonds in the li-

(a)

acceptor

ZHO---O (degree)

quid state.

In more detail, we count the fraction of molecules in-
volving n hydrogen bonds f,, n=0, 1, 2, 3. We find that the
foirfiifo: fs ratiois 1.0 1 7.8 1 18.2 © 5.0. The relative pro-
portion of the number of H-bonds provides an overview of
the intermolecular interactions. Although the majority of mo-
lecules form two H-bonds, a smaller portion of molecules
form only one or three H-bonds. Fig. 5a shows an example of
a hydrogen bond network from an MD frame, in which meth-
anol molecules are connected with one, two, or three H-
bonds. In particular, molecules with two H-bonds constitute a
linear H-bond chain, while the third H-bond becomes a
branch of the linear chain. Assuming that molecules at the
end of the linear H-bond chain contain only one H-bond, giv-
en the ratio of f,: fi ®18.2 1 7.8 =4.7 . 2, one can estimate
that each linear chain contains ~6.7 methanol molecules on
average. This value is close to the experimental estimate (5.5
+ 1.0) derived from neutron diffraction data.

Next, we turn to the dynamics of the H-bond network in li-
quid methanol. It is convenient to estimate the lifetime (75)
of the H-bond by the corresponding H-bond autocorrelation
function,

“)

hy(1,)”

where h;;(t)) =1 when a donor molecule i forms a hydrogen
bond with an acceptor molecule j at moment ¢, and h;;(¢,) =0
otherwise, h;; (f, +1) = 1 indicates that these atoms remain hy-
drogen bonded throughout the period #, to #,+¢. The angle
bracket indicates the average over multiple possible time ori-
gins and all molecules in the MD trajectories. By fitting a bi-
exponential to the time autocorrelation curve, as shown in
Fig. 5b, we can obtain the lifetime of the hydrogen bond dy-
namics,

C.(0) = Arexp(=1/1) + Aexp(=1/T2), 6]

where 7, and 7, represent the lifetimes of fast and slow H-
bond evolution processes, respectively. The sum of A, and A,
is 1, and their relative ratio indicates the percentage of the

Fraction
40
! 4.5E-3
- 4.0E-3
30 - 3.5E-3
- 3.0E-3
20 I 2.5E-3
- 2.0E-3
10 1.5E-3

1.0E-3
[ 5.0E—4
0.0E+0
1.214161.820222426
"Ho--H (A)

0

Fig. 4. (a) Definition of the geometric criteria for H-bonds in a methanol dimer. (b) H-bond density probability distribution as a function of 4HO---O and

ruo--n obtained from all trajectories. The peak position is marked in red.
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Table 2. Comparison of the average number of H-bonds per molecule
((nue)) measured with X-ray and neutron diffraction and different theor-

etical predictions.

Method (nup)* (nup)"®
X-ray™ — 1.80+0.1
Neutron Diffraction” 1.77 +£0.07 1.98
CPMD-BLYP"™! 1.89 1.9¢
CPMD-BLYP-D*! — 1.9¢
CPMD-BLYP-D2 1.8¢ —
This work: MLMD-revPBE(-D3 1.84 +£0.005 1.99

(ngB) is obtained by either *geometric criteria or *integrating the goy
curve up to the first minimum.

¢ Results are for deuterium methanol CD;0D instead of CH;OH.

¢ Geometric criteria imposed in Ref. [32] are slightly different.

(a) (b)

corresponding dynamic process in the overall autocorrelation
curve.

Our MLMD results are listed in Table 3. Our prediction
gives an estimate of 7,= 0.23 ps, which agrees well with the
experimental results (~0.2 ps). This short lifetime corres-
ponds to a fast process, which was attributed to the libration
of the OH group in previous theoretical studies”* and experi-
ments!"l. This libration process was found to be independent
of the H-bond chain length by Juki¢ et al.*4, who compared
the dynamics of hydrogen bonds for water and alcohols with
alkane chains of different lengths. 7,, on the other hand, is a
longer lifetime that corresponds to the breaking of the H-bond
itself. Our prediction of 7, is somewhat smaller than that of
the experiments but still on the order of the picosecond scale.
The difference may be because methanol is not in a pure li-
quid phase in experiments but is diluted and dissolved in
solvents” ',

g 1.0 . .

g * scatter plot
T;:) 0.8¢ — fitting curve]
S 0.6}

8

= 04}

E

5 02f

¥

T 0.0 p - -

o 1 2 3 4 5
correlation time (ps)

Fig. 5. (a) Snapshot of one chain of methanol molecules illustrating multiple types of H-bonds (blue dashed lines). (b) Scatter plot and fitted biexponen-

tial function curve of the H-bond autocorrelation obtained from MLMD.
4 Conclusions

To summarize, we construct an accurate MLFF for liquid
methanol by fitting more than 18 thousand data points at the
revPBE(-D3 level to an atomistic neural network representa-
tion. This MLFF enables sufficiently long molecular dynam-
ics simulations that are necessary to predict the structural and
dynamical properties of liquid methanol with good statistics.
Specifically, a variety of radial distribution functions, self-
diffusion coefficients, and hydrogen bond networks are
obtained in comparison with experimental and previous

Table 3. Comparison of the average lifetimes of H-bonds obtained from
the present MLMD results with previous experimental and theoretical

results.
Method 71(ps) 72(ps)
Expt"” ~0.2 ~2
Expt!'! ~0.2 ~4
CPMD-BLYP™! 0.5+0.1 1.9£0.1
This work: MLMD-revPBE(-D3 0.23+0.02 1.27+0.06

0603-7

theoretical results. This MLFF generally exhibited better
agreement with the experimental data than previous AIMD
studies at the GGA density functional level. This work valid-
ates the ability of the MLFF to model liquid systems other
than water, representing the first step toward a first-principles
description of this benchmark system. However, there are still
some discrepancies in comparison with the experimental res-
ults, especially for the radial distribution functions. These dis-
crepancies are mainly due to two factors. First, the DFT train-
ing data at the revPBEO-D3 level used here may not be suffi-
ciently accurate for describing all interatomic interactions.
Second, nuclear quantum effects (NQEs), which likely affect
most of the properties relevant to the motion of hydrogen
atoms, are neglected in our classical MD simulations. The
density functional dependence of the MLMD results and the
influence of NQEs will be investigated in the future.
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