• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

紧致黎曼曲面上带锥奇点SU(n+1)户田系统的toric曲线解

Solutions to SU(n + 1) Toda systems with cone singularities via toric curves on compact Riemann surfaces

  • 摘要: 在有限穿孔的紧致黎曼曲面X \backslash\left\P_1, \cdots, P_k\right\ 上,定义 toric 曲线为到\mathbbP^n 的多值、完全无分歧全纯映射,且其单值化群含于\mathrmPSU(n+1) 的极大环面。\mathrmSU(n+1) 户田系统在X \backslash\left\P_1, \cdots, P_k\right\ 上的 toric 解通过其关联到\mathbbP^n 中的 toric 曲线来识别。我们引入特征 n系综作为亚纯一形式的n元组,这些一形式具有简单极点和纯虚周期,且生成X 去掉有限个点上的 toric 曲线。在X上,我们建立了特征n系综与带锥奇点 \mathrmSU(n+1) 户田系统的toric解之间的对应关系。我们的方法不仅扩展了前人在 Riemann 球面上带两个锥奇点的经典解分类,还通过引入一个新的解类,超越了Lin-Yang-Zhong 存在性定理的界限。

     

    Abstract: On a compact Riemann surface X with finite punctures P_1, \cdots, P_k , we define toric curves as multivalued, totally unramified holomorphic maps to \mathbbP^n with monodromy in a maximal torus of \mathrmPSU(n+1) . Toric solutions to \mathrmSU(n+1) Toda systems on X\setminus\P_1,\cdots, P_k\ are recognized by the associated toric curves in \mathbbP^n . We introduce character n-ensembles as n -tuples of meromorphic one-forms with simple poles and purely imaginary periods, generating toric curves on X minus finitely many points. On X , we establish a correspondence between character n -ensembles and toric solutions to the \mathrmSU(n+1) system with finitely many cone singularities. Our approach not only broadens seminal solutions with two cone singularities on the Riemann sphere, as classified by Jost–Wang (Int. Math. Res. Not., 2002, (6): 277–290) and Lin–Wei–Ye (Invent. Math., 2012, 190(1): 169–207), but also advances beyond the limits of Lin–Yang–Zhong’s existence theorems (J. Differential Geom., 2020, 114(2): 337–391) by introducing a new solution class.

     

/

返回文章
返回