带有超临界增长的p(x)-Laplace方程的多重解
On some multiple solutions to a p(x)-Laplace equation with supercritical growth
-
摘要: 利用Ricceri原理研究了超临界Sobolev增长的p(x)-Laplace问题的多重解。 利用截断与De Giorgi迭代相结合的方法, 将关于次临界和临界增长的结果推广到超临界增长, 得到了p(x)-Laplace问题的至少三个解。Abstract: We consider the multiplicity of solutions to a p(x)-Laplacian problem involving supercritical Sobolev growth via Ricceri’s principle. By means of truncation combined with De Giorgi iteration, we can extend the results of subcritical and critical growth to supercritical growth and obtain at least three solutions to the p(x)-Laplacian problem.
下载: