• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

动态同质社交网络中朋辈压力的估计

Estimation of peer pressure in dynamic homogeneous social networks

  • 摘要: 带有朋辈压力的社交互动问题是社交网络分析的研究热点。博弈论是对动态社交互动进行建模的常用方法,其中一类方法假设人们的决策收益函数取决于个人协变量和朋友的选择。然而,当博弈模型中涉及不完整的协变量时,朋辈压力会被错误识别,并会引起不可忽视的偏差。为此,我们基于动态社交网络中的同质性结构,建立了新的广义恒定朋辈效应模型。新模型通过追求同质性来有效避免偏差,并且可以应用于更广泛的场景。为了估计模型中的朋辈压力,首先基于初始化扩展合并法和多项式时间两阶段法提出了两种算法来估计同质性参数,然后使用嵌套伪似然法获得模型参数的一致估计。模拟结果表明,我们提出的方法在社区误分类率和参数估计误差方面可以取得理想且有效的结果。此外,实证分析中阐述了本文提出的模型相比基准模型的优势。

     

    Abstract: Social interaction with peer pressure is widely studied in social network analysis. Game theory can be utilized to model dynamic social interaction, and one class of game network models assumes that people’s decision payoff functions hinge on individual covariates and the choices of their friends. However, peer pressure would be misidentified and induce a non-negligible bias when incomplete covariates are involved in the game model. For this reason, we develop a generalized constant peer effects model based on homogeneity structure in dynamic social networks. The new model can effectively avoid bias through homogeneity pursuit and can be applied to a wider range of scenarios. To estimate peer pressure in the model, we first present two algorithms based on the initialize expand merge method and the polynomial-time two-stage method to estimate homogeneity parameters. Then we apply the nested pseudo-likelihood method and obtain consistent estimators of peer pressure. Simulation evaluations show that our proposed methodology can achieve desirable and effective results in terms of the community misclassification rate and parameter estimation error. We also illustrate the advantages of our model in the empirical analysis when compared with a benchmark model.

     

/

返回文章
返回