• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

金融时间序列系统风险度量:动态二元Dvine模型

Measuring systemic risk for financial time series: A dynamic bivariate Dvine model

  • 摘要: 在金融市场中,对金融资产的尾部风险的精准度量一直是研究者关注的焦点。本文提出了一个新的二元时间序列模型,用来计算和预测金融资产的在险价值(VaR)和条件在险价值(CoVaR)。该模型可以同时捕捉二元时间序列中存在的序列相关性和横截面相关性,从而提高估计和预测的精度。本文在模型推导中给出了该二元时间序列模型的参数估计值,并且基于plug-in方法给出了VaR 和CoVaR 的估计值。还建立了Dvine模型估计量的渐近性质。对金融股价的实证分析表明我们的模型在风险度量和预测方面表现良好。

     

    Abstract: Accurate measurements of the tail risk of financial assets are major interest in financial markets. The main objective of our paper is to measure and forecast the value-at-risk (VaR) and the conditional value-at-risk (CoVaR) of financial assets using a new bivariate time series model. The proposed model can simultaneously capture serial dependence and cross-sectional dependence that exist in bivariate time series to improve the accuracy of estimation and prediction. In the process of model inference, we provide the parameter estimators of our bivariate time series model and give the estimators of VaR and CoVaR via the plug-in principle. We also establish the asymptotic properties of the Dvine model estimators. Real applications for financial stock price show that our model performs well in risk measurement and prediction.

     

/

返回文章
返回