• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

基于通用因果树对观测型数据进行子群因果效应推断

Inference of subgroup-level treatment effects via generic causal tree in observational studies

  • 摘要: 探索因果效应中的异质性在政策评估和决策制定方面具有广泛的应用。近年来学者们开始应用机器学习方法来发掘因果关系,目前流行的方法大多聚焦于估计个体水平上的异质性处理效应。然而在大数据场景下,识别子群水平上的处理效应能更直观地给决策者展示异质性的形成机制。本文提供一种树类方法,在观测型数据下识别子群异质性处理效应,称为通用因果树。它通过最大化节点之间处理效应的差异来进行树的分裂,并且嵌入了半参数框架改善节点上处理效应估计量的表现。同时,我们借鉴honest估计隔离了树的建立与参数的推断过程,实现子群处理效应的有效推断。模拟实验表明,该方法在子群识别和参数估计的正确性上均有明显优势,并且可以提供有效的统计推断。

     

    Abstract: Exploring heterogeneity in causal effects has wide applications in the field of policy evaluation and decision-making. In recent years, researchers have begun employing machine learning methods to study causality, among which the most popular methods generally estimate heterogeneous treatment effects at the individual level. However, we argue that in large sample cases, identifying heterogeneity at the subgroup level is more intuitive and intelligble from a decision-making perspective. In this paper, we provide a tree-based method, called the generic causal tree (GCT), to identify the subgroup-level treatment effects in observational studies. The tree is designed to split by maximizing the disparity of treatment effects between subgroups, embedding a semiparametric framework for the improvement of treatment effect estimation. To accomplish valid statistical inference of the tree-based estimators of treatment effects, we adopt honest estimation to separate tree-building process and inference process. In the simulation, we show that the GCT algorithm has distinct advantages in subgroup identification and gives estimation with higher accuracy compared with the other two benchmark methods. Additionally, we verify the effectiveness of statistical inference by GCT.

     

/

返回文章
返回