• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

基于全局的引文网络影响力最大化算法

Citation network’s influence maximization algorithm based on global influence

  • 摘要: 从大量的期刊论文中搜寻出最具有影响力的若干篇论文对于学术研究具有重要意义,但现有影响力最大化算法需要结合贪心算法,时间复杂度较高.依据论文引用网络中引用关系的时间单向性和无环特征,提出一种基于节点全局影响力的影响力最大化算法.该算法主要包括: ①计算所有节点的全局影响力.结合引文网络的发表时间特性,构造上三角稀疏影响方阵.在线性阈值传播模型的基础上,利用节点间的直接、间接路径影响以及累积计算规则模拟影响力在网络上的传播过程.方阵每进行一次运算,会将全部节点的影响向下传播一跳,得到下一个路径的影响,并统计全部影响,最终得到表示所有节点全局影响力的方阵;②将全部节点按全局影响力排序.选择前n个节点作为候选节点来选取k个种子节点,在选取的过程中避免影响力较大节点的聚集情况.以真实的学术引文网络数据集为实验数据,将提出的算法与两种基准算法从激活范围和运行时间两个方面进行对比.实验结果表明,该算法大大降低了时间复杂度,且激活范围接近于贪心算法.

     

    Abstract: It is of great significance for academic researches to search out the most influential papers from a huge number of Journal papers. However, the existing algorithms for maximizing influence need to be combined with greedy algorithm, which increases the time complexity. According to the time unidirectional and acyclic features of the citation relationship in the citation network, an algorithm is proposed to maximize the influence based on the global influence of nodes. The algorithm mainly includes: ①Calculating the global influence of all nodes. Combined with the publication time characteristics of the citation network, the upper triangular sparse influence matrix is constructed. On the basis of the linear threshold propagation model, the direct and indirect path effects between nodes and the cumulative calculation rule are used to simulate the propagation process of influence on the network. Every time the square matrix is calculated, the influence of all nodes will be propagated down one hop to get the influence of the next path, and all the influences will be counted to finally get the square matrix representing the global influence of all nodes; ②All nodes will be ranked according to the global influence, and the first n nodes will be selected as candidate nodes to select k seed nodes. By the cumulative calculation rule, the proposed algorithm avoids the overlapping of influence among nodes during the process of selecting seed nodes. The real academic citation network data set is taken as the experimental sample, and our algorithm is compared with the two benchmark algorithms in terms of activation range and running time. Experimental results show that the proposed algorithm greatly reduces the time complexity, and that the activation range is close to the greedy algorithm.

     

/

返回文章
返回