• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

基于注意力机制-双向长短时记忆网络的智能车周车行为预测

The surrounding vehicles behavior prediction for intelligent vehicles based on Att-BiLSTM

  • 摘要: 本文提出了一种智能驾驶车辆周车行为预测方法。行驶车辆和环境变化的不确定性大导致周车行为预测困难。提出了基于编码器与双向长短时记忆网络(BiLSTM)联合的预测方法,保证长序列下的可记忆性。根据不同信息的重要性程度,基于注意力机制构造双向长短时记忆网络,保证了编码器在长序列下的可记忆性。所设计的注意力机制双向长短时记忆网络模型保证了周车行为预测的准确性与高效性。

     

    Abstract: A surrounding vehicles behavior prediction method was presented for intelligent vehicles. The surrounding vehicles’ behavior is hard to predict since the significant uncertainty of vehicle driving and environmental changes. This method adopts bidirectional long short-term memory (BiLSTM) model combined with an encoder to ensure the memory of long-time series training. By constructing an attention mechanism based on BiLSTM, we consider the importance of different information which could guarantee the encoder’s memory under long sequence. The designed attention-bidirectional LSTM (Att-BiLSTM) model is adopted to ensure the surrounding vehicles’ prediction accuracy and effectiveness.

     

/

返回文章
返回