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Public summary
m Constructing the n-particle system with mean filed interaction, whose dynamic follows a couple of SDEs with jumps.
m Studying the existence of a solution to the corresponding McKean-Vlasov limit equation.

m Establishing the propagation of chaos under a proper metric, giving an estimate of the speed of the convergence and
proving the uniqueness of the solution to the McKean-Vlasov limit equation.
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Abstract: This paper considers an n-particle jump-diffusion system with mean filed interaction, where the coefficients are
locally Lipschitz continuous. We address the convergence as n — oo of the empirical measure of the jump-diffusions to the
solution of a deterministic McKean—Vlasov equation. The strong well-posedness of the associated McKean—Vlasov equa-
tion and a corresponding propagation of chaos result are proven. In particular, we also provide precise estimates of the

convergence speed with respect to a Wasserstein-like metric.
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1 Introduction

The interaction of particle systems is commonly observed in
both physical and biological science. The behavior of such
systems as the number of particles strength approaches infin-
ity has sparked widespread interest, and the related study has
been a long-standing issue. For instance, the interacting
particles can stand for the stars in a galaxy'"), the units of a
neural network! or the animals of a cluster®’.

Mean field analysis is utilized to investigate systems that
comprise a large number of interacting elements. When the
scale of the particle system approaches infinity, the behavior
of each element is assumed to be independent of others ex-
cept for an average effect caused by the collective behavior of
the system as a whole. Mean field analysis is widely em-
ployed in various fields, for example, describing nuclear
structure and low-energy dynamics'", simulating bio-inspired
neuronal networks™®, and modeling interbank lending and
borrowing activities'?. And its mathematical properties have
been studied from various perspectives in recent years (see
Refs. [8, 9] for example). To describe such a mean field phe-
nomenon, the following mathematical framework is con-
sidered: the dynamics of the system with n particles are gov-
erned by n SDEs, and the mean field interactions can be ex-
pressed as a dependence on the empirical measure of the coef-
ficients related to the equation. As n tends to infinity, the dy-
namic of the limit system follows the McKean—Vlasov equa-
tion where the coefficients exhibit a natural dependence on
the probability distribution associated with its solution.

The convergence result for the empirical measure with re-
spect to the n-particle system is called the propagation of
chaos property. The concept of propagation of chaos was first
proposed by Ref. [10] to describe the asymptotic independ-
ence between particles that arises as the spatially extension
tends to infinity. This convergence implies that the statistical
properties of the system can be effectively described by the
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limiting measure, allowing for simplifications in the analysis
and modeling of the system. For a more comprehensive over-
view, one can refer to Ref. [11].

Since the seminal work Ref. [12], there have been various
studies on well-posedness of the McKean—Vlasov equations
and the propagation of chaos for the mean field model
without jumps, even under a less strict hypothesis than the
Lipschitz continuity of the coefficients. For example, under
relaxed regularity conditions, Ref. [13] is a recent work that
establishes weak and strong well-posedness results and Ref.
[14] considers also the propagation of chaos. Ref. [15] invest-
igates the uniform-in-time propagation of chaos for the mean-
field weakly interacting particle system.

In this paper, we focus on the mean field coupled jump-dif-
fusion particle system and its limit McKean—Vlasov equation.
The jump term is modeled as a double stochastic Poisson pro-
cess with the state-dependent intensity. The coefficients of
corresponding McKean—Vlasov equation are locally Lipschitz
continuous and satisfy a growth condition. We establish the
strong well-posedness of the relevant McKean—Vlasov equa-
tions and prove a convergence result for the particle system as
it extends spatially.

The first novelty of this paper is that we prove the strong
well-posedness of the solution to the McKean—Vlasov equa-
tion under our framework. This result of the model with
jumps has already been studied under globally Lipschitz con-
tinuous assumptions on the coefficients"”. For the locally
Lipschitz case, it becomes more challenging. Ref. [17] uses
Osgood’s lemma instead of Gronwall’s lemma to deal with
the locally Lipschitz case, and Ref. [18] applies the Euler ap-
proximation to construct a solution of the McKean—Vlasov
equation. In this paper, we first establish the existence of a
local (strong) solution by a classical truncation argument,
then we provide a criterion using Lyapunov functions and
thereby prove that under the given growth conditions, such
solution is a global one. As an example of our locally

DOI: 10.52396/JUSTC-2023-0163
JUSTC, 2024, 54(8): 0803


mailto:lzq7890@mail.ustc.edu.cn
https://justc.ustc.edu.cn/article/doi/10.52396/JUSTC-2023-0163
https://justc.ustc.edu.cn/article/doi/10.52396/JUSTC-2023-0163
mailto:lzq7890@mail.ustc.edu.cn
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://justc.ustc.edu.cn/article/doi/10.52396/JUSTC-2023-0163
https://justc.ustc.edu.cn/article/doi/10.52396/JUSTC-2023-0163
https://justc.ustc.edu.cn/article/doi/10.52396/JUSTC-2023-0163
https://justc.ustc.edu.cn/article/doi/10.52396/JUSTC-2023-0163
https://justc.ustc.edu.cn/article/doi/10.52396/JUSTC-2023-0163
https://justc.ustc.edu.cn/article/doi/10.52396/JUSTC-2023-0163
https://justc.ustc.edu.cn/article/doi/10.52396/JUSTC-2023-0163
https://justc.ustc.edu.cn/article/doi/10.52396/JUSTC-2023-0163
https://justc.ustc.edu.cn/article/doi/10.52396/JUSTC-2023-0163
https://justc.ustc.edu.cn/article/doi/10.52396/JUSTC-2023-0163
https://justc.ustc.edu.cn/article/doi/10.52396/JUSTC-2023-0163
https://justc.ustc.edu.cn/article/doi/10.52396/JUSTC-2023-0163
https://justc.ustc.edu.cn/article/doi/10.52396/JUSTC-2023-0163
https://justc.ustc.edu.cn/article/doi/10.52396/JUSTC-2023-0163
https://justc.ustc.edu.cn/article/doi/10.52396/JUSTC-2023-0163
https://justc.ustc.edu.cn/article/doi/10.52396/JUSTC-2023-0163
https://justc.ustc.edu.cn/article/doi/10.52396/JUSTC-2023-0163
https://justc.ustc.edu.cn/article/doi/10.52396/JUSTC-2023-0163
https://justc.ustc.edu.cn/article/doi/10.52396/JUSTC-2023-0163
https://justc.ustc.edu.cn/article/doi/10.52396/JUSTC-2023-0163
https://justc.ustc.edu.cn/article/doi/10.52396/JUSTC-2023-0163
http://justc.ustc.edu.cn
https://doi.org/10.52396/JUSTC-2023-0163
https://doi.org/10.52396/JUSTC-2023-0163
https://doi.org/10.52396/JUSTC-2023-0163
https://doi.org/10.52396/JUSTC-2023-0163
https://doi.org/10.52396/JUSTC-2023-0163

Zzsrg "

Mean field analysis of interacting network model with jumps Li

Lipschitz system, we show that a biological science model
called FitzHugh-Nagumo neuron networks (which was first
proposed by Ref. [19], with clarification note by Ref. [20])
falls into our model.

The second novelty of our paper is that we establish the
propagation of chaos property and estimate the order of the
convergence rate of our model. Under continuous frame-
works, Refs.[21, 22] study the convergence rate. Refs.[17, 18]
prove the propagation of chaos with respect to the jump mod-
el under locally Lipschitz assumption, but without a conclu-
sion on the convergence rate. In this paper, to prove the
smoothness of the propagator, we study the well-posedness of
an integro-differential parabolic equation. With the help of
this smoothness property, we ultimately provide an estimate
for the order of the convergence rate with respect to a
Wasserstein-like distance.

The paper is organized as follows: we introduce in Section
2 the n-particle system with mean filed interaction, whose dy-
namics follow a couple of SDEs with jumps. In Section 3, we
study the existence of a solution to the corresponding McK-
ean—Vlasov limit equation. Section 4 establishes the propaga-
tion of chaos under a proper metric, gives an estimate of the
speed of convergence and proves the uniqueness of the solu-
tion to the McKean—Vlasov limit equation.

2 Model

2.1 Jump diffusion model

Let (Q,F,F,P) be a complete filtered probability space with
the filtration F = (F,)or, satisfying the usual conditions. We
consider an interacting system involving n SDEs which is de-
scribed as follows: fori=1,---,n,

dX! = f(r, X)dr + g(¢, X)dW! + h(t, X )dN!, X €R", (1)

where X, =(X!,---,X?) for 1€[0,7] and W' = (W)),qor for
i=1,---,n are n-independent (d-dimensional) Brownian mo-
tions, and for each i=1,---,n, N'=(N)or is a double
stochastic Poisson processes with the state-dependent intens-
ity given by the positive functions A,(¢,X,.) for 1 €[0,T]. In
other words, it holds that

M =N - L A(s,X)ds, 1€[0,T], )

is a (P, F)-martingale.

We impose the following assumption on the coefficients
(f,8,h) of the system (1), so that this system admits a unique
strong solution X = (X)) Which takes value on R™.

(A;) The coefficients f:[0,T]xR™ —-R", g:[0,T]x
R™ — R™ and h:[0,T]xR" — R" satisfy the uniformly loc-
ally Lipschitz condition. Namely, for any R > 0, there exists a
constant L, > 0 such that for all £ € [0,7] and x = (x,,--,x,),
Y=, € Br(0) := {x eR™; |x| <R},

|f(x)— f@& )+ 18, x) — gt |+ |h(t, x;) — h(t, y)| < Lelx —yl,
Vi=1,---,n,
where |-| denotes the Euclidean norm.

Under a truncation argument, the condition (A,,,) can only
guarantee the existence and uniqueness of local (strong) solu-
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tions of (1). In order to establish the global solution, we fur-
ther impose the condition on the existence of a Lyapunov
function associated to the system (1) and give the following
lemma:

Lemma 1. Let the assumption (A,,,) holds, also suppose
the following:

(A,,) There exists a function V:R™ — R, :=(0,+00) sat-
isfying that

(i) Let g :=inf,. V(x), then lim,_,., gz = +00;

(i) B[V(X,)] < co;

(i) There exists a constant C >0, such that for all
te[0,T1,

E[V(X.., )l <E[V(X)1+C LI (1+E[V(X,.)])ds,

where 1 :=inf{t € [0,7); |X,| >R}, inf@:=T.

Then there exists a unique strong solution X = (X,)or; of
the system (1) with an initial condition satisfying
E[IX] < co.

Proof. By applying Theorem 9.1 of chapter IV of Ref. [23],
the condition (A,,,) guarantees the existence and uniqueness
of local (strong) solutions to (1). In other words, we have the
solution of (1) on the time interval [0, A 7,] for all t € [0,T]
and R > 0. Thus, it is enough to prove that 7, = T as R — oo,
P-a.s. Note that the condition (iii) of (A,,,) yields that for all
t€[0,7] and R>0, E[V(X,.)] <e“{1+E[V(X,)]}. There-
fore, we have for all ¢ € [0,T7],

1
P(r, <1) < —E[K,, V(X,)] =
q

1 ’ 1 )
B[k, V(X,0)] < e (1 +EIVOD.

and hence P(r; <f) > 0 as R — oo by the condition (i) of
(AL.), which gives the desired result.

We next give a condition on the growth of the coefficients
of the system (1):

(Agow) The coefficients, f:[0,T]xR™ —R", g:[0,T]x
R™ —>R™, h:[0,T]XxR"—>R", and A,:[0,T]xR™ —>R,,
satisfy the following growth condition: there exists a constant
K > 0 such that for all 1€ [0,T] and x = (x,,---,x,) € R™,

2 Z X f(t,x)+tr[gg"(t,x)]+

i=1

Z A, %) (Jh(t, x)I” + 2x] h(t, x;)) < K(1+ |x).
i=1
It is not difficult to verify that if E[|X,]’] <co, then
V(x)=|x]* for xeR™ satisfies the conditions (i)—(iii) of
(A,.) under the assumption (A,,, ). Then, Lemma 1 yields
that:
Lemma 2. Let assumptions (A,,) and (A,,,) hold. Then
there exists a unique strong solution X = (X,)or, of the sys-
tem (1) with an initial condition satisfying E[|X,|*] < co.

2.2 Mean field model

The particle system considered in this paper is given by the
following mean field model:
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dx' =f [r X, Za(X‘,X’}dH
[tX‘ Zﬁ(X’,X']de+

h(t, X, )dN;, “4)

J[;OI‘ = 1, ,n, where «@:R"xXR" —>R, B cR”" %X R™ —>R,
f:[0,TIXR"XR—->R",  2:[0,T]XR"XR — R"™ and
h:[0,T]xXR™ — R" are all measurable functions.

Let us define the following functions: For x=
(xl’..' ’xn) E Rmn’

- il . i
£, %) .=f[t,x,ﬁ;a(x,x)J,

- il C i
g,(t,x).zg[t,x,njzlﬁ(x,x) : (5)

If (f..g.,h) above satisfies assumptions (A, ) and (A,..),
then by Lemma 2 the system (4) admits a unique strong solu-
tion X = (X',---,X") provided that E[|X,|’] < co.

Example 1. Ref. [19] address the model of the network of
FitzHugh-Nagumo neurons with simple maximum conduct-
ance variation, and such model is also investigated by Refs.
[24-26]. However, the aforementioned studies predomin-
antly concentrate on research conducted within the frame-
work of diffusion state equation models. We next provide a
verification that the network model with one population in
Ref. [19] falls into our jump-diffusion system (4). To this pur-

pose, let m=3 and d=3. For i=1,---,n and
X =(x,x,x) e RXRX[0,1], define the coefficients as
a(x,x):=-J(x -V, )x} and B(X,¥):=-c(x -V,)x],

where J,V,,,0 €R,. For any (¢,x,z) € [0,T]XR’XR, we in-
troduce the following functions:

G i
X:—T—X‘2+I,+Z

]_C(t, x,7)= c(x' +a—bx)) s (6)
+—Hu’ \;(]_x) atl‘x
Tor 0 z
gnxz={0 O 0 )
0 0 x )\/ (1) +a,x,
where x(x}) = 0.16*2042‘3,.}2) and 7:[0,7] > R isa determin-

istic bounded function. In addition, V, a,b,c, a,,a, and o,
are all positive constants.

Recall the functions f,g defined by (5) with ?,g and o,
given as above. Note that y : R = R, is Lipschitz continuous.
Then, it is not difficult to verify that f,g satisfy assumptions
(Asy) and (A,,,) with £ =0. Let us further impose the fol-
lowing condition:

(A,,) The intensity function 4, : [0,T] X R™ — R" of the ith
state and the jump function £ : [0,T]XR" — R" satisfy that:

(i) For any R > 0, there exists a constant L, >0 which is
independent of ¢, such that for all 7€[0,7] and
x=(0x' e x), y=0", 0,y € Br(0) :={x e R™; |x| <R}
(where x',y' € R™),
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|h(t, x) = h(t,y")| <
(i) For i=1,---,n, A(t,x)= py(t,x), where ¢ :[0,T]x

Lilx' =y, Vi=1,---,n;

_ 12
R” — R, is measurable and x := — ) x'.

n -
(ii1) There exists a constant K > 0 such that for all 7 € [0, 7]
and x = (x',---,x") e R™ with x' e R",

D Pt DA, XOF + 257 h(t, ) < K(1+|xP).

Therefore, we have established a jump-diffusion model of
the network of FitzHugh-Nagumo neurons with simple max-
imum conductance variation as an extension to the one in Ref.
[19], where the jump process models an intense response of
the neuron when it faces an external environmental impact,
allowing for a more realistic representation of spiking activ-
ity and the integration of multiple inputs within a neuron.

3 Mean field analysis

In the following sections, we only consider the case that the
intensity function of the i-th state is given by the form
A(t,x) = pay(t,x) where p, e R, and ¢ : [0,T]XR" - R, is a
bounded measurable function with upper bound C,. We intro-
duce the empirical measure-value process as

1 n
/J;l(dp’ d'x) = Z ;6<p,,x;)(dp’dx)’ (8)

where 6 denotes the Dirac delta measure, (p,x)e€E :=
R, xR" and puy(dp,dx,) is the empirical measure related to
the initial state. We propose the following assumption:

(A,;) There exists p € R, such that p, = p as i = co. The
sequence of r.v.s (X} )., is i.i.d. and satisfies that E[|X][’] < co
foralli>1.

Let P(E) be the set of all Borel probability measures on E.
Under assumption (A;,), we know that there exists a probabil-
ity measure p, € P(E) such that yj = p, in the weak sense.

Assume ¢ € C*(E) is a real-valued twice continuously dif-
ferentiable function, let d,¢ := (9,,¢)., .., be the gradient of ¢
and d’¢ be the corresponding Hessian matrix. By (8), it holds
for s € [0,T] that

n

: ! D B = 2 B x
o) = - § a(e X)), (upx) = § Bx.X).
©)

Then, for i=1,---,n and t€[0,T], 1td6’s formula yields

that
B(p XD =4(ps X))+ [ 0,00 X T, X, (X, )
2 S wlFo. xpgg (5. X, G Bx, )] ds
{0 P @ (P X+ 15, X)) = 3 (p X)) (5, X.) ds+
J7 0.0 (X B 5. X G BOCL D)) AW
I @ X+ h(s. X)) = $(po X)) dM:.
(10)
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Define the following operators as: for (¢t,p,x) € [0,T]XE
and v € P(E),

Lop(p.x)=
6x¢(p5 x)Tf(t’ X, <V! a'(x, )>)+

1 —
5 r[8:0(p. 088" (1.3 (v B ). an

L7d(p,x) =
Pp(p(p,x+h(t,x)— d(p,x)Y(t,{(v, 1)),

where I(p, x) = x. Therefore, it holds that
G0y = @)+ |, (10, L0+ L7 9) ds

1 L o [ [
- Zj 0.0 X)E (5. X0, (. BOX, )W

I . . . .
+o 20, G X X = 9(p X ) AM
12)
Taking formally n — co on both side of (12) shows that

any limit point of u" should satisfy the following FPK equa-
tion:

Wo0) = i 9+ [ (o L9+ L7 g)ds. (13)

We next establish a solution of the above FPK equation.
Prior to do this, we introduce the following state equation giv-
en by

p(dp.dx) = [,E[6,04(dx)| py(dp.dx),  on B(E),
X7 = x4 [y F s, X0,y (X0, ) )d s+
Jo 8s, X0t g, BXT, )y ) AW, +
Jo (s, Xro)dN,,
(14)

where N = (N,).qor; 18 a double stochastic Poisson process
with intensity process py(t,{(u,.I)), namely, the stochastic
process M, ::N,—f(,'pl//(t, {u,,I)ds for r€[0,T] is a
martingale.

For (s,y) € [0,T]xR", define

a(s,y) := [, Ela(y, X?*")]po(dp,dxo) (= (u,, a(y,))),

B(s.y) := [LEIBY, X ]py(dp,dxo) (= (.. B(.))),

where the corresponding intensity of &, is py(¢,E[X]""]).

To establish the well-posedness of equation (16), we give
the corresponding assumptions:

(A7) The coefficients f : [0,T]xR" xR — R", g : [0,T]x
R"XR - R™ and h:[0,T]xR" — R" satisfy the uniformly
locally Lipschitz condition. Namely, for any R > 0, there ex-
ists a constant L,>0 such that for all re][0, T1,
X1, X% € Bx(0) :={xeR"; |x| <R} and y,,y, €R,

£t 20, 91) = F(t, X, y2) + (88 X0, 1) = B8, X0, 90|+
(2, x,) = h(t, x,)| < Le(1x, = X, + |y, = ).

(A,;) The coefficients a:R"XR"—>R and B:R"X
R" — R satisfy the uniformly global Lipschitz condition and
a growth condition. Namely, there exists a constant J >0
such that for all x,, x,,y,,y, € R",

la(xy, y1) = @(, )| + B(x1, y1) = B, o)l < J(1xy — Xl + [y — yal)
(e, y)l + BOe, YOI < (A + x|+ [yi]).

(A,,,) The coefficients F:[0,T]XR"xR - R", g:[0,T]x
R"XR —-R™ and h:[0,T]xXR" - R" satisfy the following
growth condition: there exists a constant K > 0 such that for
all 1€ [0,7] and x,y € R",

207 F(t,x,) +tr[ g (6, x. ) | < K(1+ [x +1yP),
(e, )P +2x7h(t,x) < K(1 +]xP).

Lemma 3. Let assumptions (A7), (A,) and (A’

grow

) hold.
Then there exists a unique strong solution X** = (X*),or; of
the equation (16) with an initial condition (p,x,) € E.

Proof. By combining the two assumptions (Az;) and
(A.z), we find that the coefficients of the drift term and diffu-
sion term of (16) actually satisfy the same locally Lipschitz
condition as in assumption (A,;,), hence (16) admits a unique
local strong solution.

Subsequently, we show that this solution is actually a glob-
al one. Let V(x) = |x|*, for all x € R". It is not hard to check
V(x) satisfies (i) and (ii) of assumption (A,,,). For (iii), an ap-
plication of 1t6’s formula leads to

tATR

VO =+ [ 20X (s, X0, (s, X)) s+

(15) [ 2y s X0 B X)W+
then Eq. (14) can be rewritten as R - an
[ @ (s X0 Bls X7 | dis
X(’;MY# = Yo, IATR
_ ‘ (Xf,xg,g + h(S, Xﬁ),xg.p))z _ (Xf.xg.p)z dNJ
dxro* = f@, X", a(t, X)) dr+ L ( )
16
3 X7 B, X)) AW+ (16) Taking expectation on both sides of Eq. (17), by assump-
tion (A;,,,) and (A,) it holds that for some positive constant
h(t, X!")dN,. —C.
C = Cignpuas >0,
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E[V(th;\j’;#)] =x{2) +E [LMTR Z(Xf*tw)—r? (S, Xf.m#’ E[a(y, XfYX(W)] |v=xl’ao»‘ ) dS+
E [ . g8 (s, X BIB(, Xf,x(.#)]|‘.zx‘p,m,ﬂ) ds] +
= Uo (s, EIX D) (Jh(s, XPOP +2(X70") (s, X)) ds] <
(06 1+ CB| [ (1 enep o+ [Bla0 X0l + (18)

|BLBG X7y

BIO 1+ CE| [ (11X + B

’ )ds] <

]|2)ds] <

BIOG™)1+C [ (BIXZF1+1)ds,

which implies that V(x) also satisfies (iii). Then some similar
estimates as in the proof of Lemma 1 yield that the equation
(16) with an initial condition (p, x,) € E has a unique (global)
strong solution.

By Lemma 3, the system (16) admits a unique strong solu-
tion. Equivalently, we have proved the strong existence and
uniqueness of ¢ = (i4,).cory defined in the system (14). Now
we show that this measure is indeed a solution of the corres-
ponding FPK equation.

Theorem 4. Let the assumptions (A;;), (A7), (A,) and
(A;,,,) hold. Then p = (i,)c0) defined in (14) is a solution of
the FPK equation (13).

Proof. For any ¢ € C*(E), by Eq. (14) and It6’s formula, it
holds that

BpXI) =d(pX; )+ [ L ¢(p. X+
1 _ ’
S 00 X R X, G X AW

Jy @ X (s, X)) = 9(p. X0 ) AN,
(19)

Taking expectations on both sides of this equation to kill
the martingale term and integrating with respect to p, on E,
we have

|, Blop. X7 lpy(dp. dx)) =
| Elo(p, X lpy(dp, dx)+
[0 [LBIL + £)9(p X0 py(dp.dx)lds = (20)
| ¢ x)po(dp, dx)+
[0 LRI + £)6p, Xrp(dp, dx)Ids.
This shows that u satisfies the FPK equation (13), that is
et = )+ [ (. L0+ Lr0Yds. (1)

Thus, we complete the proof.

4 Propagation of chaos

From Theorem 4 we know that there exists at least one solu-
tion to the FPK equation (13). We fix once and for all one
such solution y,. Next we establish the propagation of chaos
of the FPK equation (13) (which means a convergence result

0803-5

of the empirical measure of the particle system to the solu-
tion of the FPK equation (13) under a suitable distance) and
thereby show that such solution of (13) is actually unique.

4.1 Propagator of FPK equation

We first give the definition of propagator corresponding to
Eq. (13).

Definition 1. For (p,x) € E and 0 <t <u < T, the propag-
ator corresponding to the probability solution u = (i), of
Eq. (13) is defined as

P, #(p,x) :=E[¢(p, X;")], (22)

where ¢ € C2(E) is bounded and twice continuously differen-
tiable, and the process X" = (X»*) ., is the unique solu-
tion of the following SDE:

X =x + j‘v 7(r, X, (X0, ) ) dr+
t

I 70X G B AW, + [ X120
23)

where N = (N,)qor is a double stochastic Poisson process
with intensity process py(t,{w,,I)), namely, the stochastic
process M, := N, — f[:plﬁ(s, {u,,I))ds for t € [0,T] is a martin-
gale.

The following two lemmas give important properties of the
propagator, which will be useful for estimating the conver-
gence rate of " to u.

Lemma 5. Let the assumptions (A,,), (A7), (A,) and
(A,,,,) hold, suppose further that f, g is twice continuously
differentiable, also suppose the following:

(A,) The coefficient & :[0,T]xR" — R" is bounded, and
there exist constants L,, L, > 0 such that for all 7 € [0,T] and
X, X, €R",

Li]x, = x| < |h(t, x,) = h(t, x,)| < Ly|x, — x|
Then the propagator in Definition 1 satisfies that for all
$€CAE),0<i<u<T and (p.x) € E,
O,P$(p.x)+ (L + L) Pu(p.x) =0,
(24)
P..(p,x) = ¢(p, ).

where L* and L} are defined as in (11). Moreover,
P..p(p,-) € C([0,u] xR™).

DOI: 10.52396/JUSTC-2023-0163
JUSTC, 2024, 54(8): 0803


https://doi.org/10.52396/JUSTC-2023-0163
https://doi.org/10.52396/JUSTC-2023-0163
https://doi.org/10.52396/JUSTC-2023-0163
https://doi.org/10.52396/JUSTC-2023-0163
https://doi.org/10.52396/JUSTC-2023-0163

Uust¢” Mean field analysis of interacting network model with jumps Li

Proof. We first consider the following parabolic equation
with respect to 6 : [0,u] xR" — R for fixed p:

0,0(t,x) + (L’;"' + L’,’“’)H(r, x) =0,
(25)
O(u,x) = ¢(p, x).

This is a type of second order integro-differential parabolic
equation with Cauchy boundary. By Theorem 3.1 of chapter
II of Ref. [27], we know that (25) has a unique classical solu-
tion 0(¢,x) € C**([0,u] XxR™).

Next, for all (7,x) € [0,u] xR”, by applying 1t6’s formula to
O(u, X!, we obtain

02, %) =00, X1 = [ (0, + L + L) 0(s, X:7+)ds—
[ 8,008 X35, X, G BX AW~ (26)

1O X7+ s, X274) = s, X)) M

(W Prugp) = fw E

By taking expectations on both sides of Eq. (26), we deduce
that

6(t,x) =E [e(u,x;m'#) - j (0.+ L2 +L) H(S,X;””*“‘)ds] =

E[60(u, X;")] = E[¢ (p. X;"*)] = Prup(p, %)
27
This yields that P.¢(p,-) € C*([0,u] xR™) satisfies the
PDE (24). Thus, we complete the proof.
Lemma 6. Let conditions of Lemma 5 hold. Then for all
0<t<u<T,

0, {u,, P,,¢) =0. (28)

Proof. It follows from Theorem 4, Lemma 5, Eq. (14), and
an application of Itd’s formula to P,,é(p, X"***) that

[P.¢(p, X)) po(dp, dxo) =

I B[Pudp. X0 & [0, + L2+ LIPS, X0 dst

Sy PGP X X (X, ) AW, (29)
J[ (P, X7+ h(s, X070)) = Pg(p, X0 ) M, Joy(dp, dx,) =

| E[Pog(. X;7")|po(dp, dx,).

It appears that i Pud) s independent of ¢, which indic-
ates the desired result.

The propagator defined by Eq. (22) can help us establish
the following relation satisfied by p — u, for any ¢ € [0,T]:

Lemma 7. Let conditions of Lemma 5 hold. Then for any
t€10,T], it holds that

W = s @) = W = o> Po,) +

1 _ 1 o _
- 0.P,p(pi, X)g(s, X, - (X, X7))dW:+
”Z‘L &(pi X)8(s, X, ",Z.'B (30)

I & . : . ,
20 (Pud(pi X+ (. X)) = Pud(p. X)) AM..

Proof Recall the state process of our particle system

= (X))icory defined by (4) for i > 1. By applying Itd’s for-
mula to P.¢(p., X)) for re[0,7], it follows from Lemma 5
that

Pr,r¢(pi’X:) =
PO,r¢(pi’X(i)) + L’(ax + ‘EZ#A + L;vy‘)Ps,tgb(pi’Xi)ds'i_

jo'afuwp,»,x;)g{s,X‘ Zﬁ(X',Xf)dW;'+
Jy (Pud(pi X+ (5. X)) = Po(p, X)) dM. =

dwi+

Pod(pX)+ |, 'aXPA.,¢<pi,X§)§(s,X’ Zﬁ(X',Xf

Jy (Pud(p XL+ h(s.X )= P(p. X)) dM,,
31

0803-6

then in view of the definition of u", we have

\ 1Y o
P9y = ~ Z PL(pn X)) = (il Pos) +

% Z J 0. s~/¢(Pf»Xi)§[s,X’ Zﬁ(X‘ X))

I & . . .
) (PP X+ b5, X)) = Pur(p X)) M.

ldwi+  (32)

Note that Lemma 6 implies

(s Prup) = (pto» Po,p) , for all r € [0,1]. (33)

From (32) and (33), we deduce that

<l’l: _/Jr’Pr./¢> = </‘18 _MU’PUJ¢>+
I —
- Z |, 0.P.g(p. X

1 or ‘ . . .
D) (P X+ h(5. X))~ Pur(p. X)) AM.

1 - A
, X, — X, X)) [dWi+
X ;ﬁ( | 5)) \ (34)

In Eq. (34), let r =t and note that P,,¢ =
Lemma 5, then we get the desired result.
Next we give the estimate of the gradient 9,P,,¢(p,x). To

¢ by virtue of

this purpose, we impose the following one-side Lipschitz con-
dition:

(A,..) The coefficient ]_”: [0,T]xR"xR — R™ satisfies a
one-side Lipschitz condition. Namely, there exists a constant
L7 such that for all t € [0,T], x,,x, € R" and y,,y, €R,
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<X =X, 7(1,)51,)71) _7(1,)52,)72) >< L?(lxl _lez +yi _yzlz)-

Lemma 8. Let conditions of Lemma 5 and (A,,,) hold, sup-
pose the function ¢ satisfies that:

(i) ¢ € C(E);
(i) ¢ is Lipschitz continuous and

lp(p1, x1) — d(pa, x2)| <

10,P, . (p, x)| <P, (35)

where C = C7,x, > 0 is a constant.

Remark 1. Based on the proof below, condition (ii) in
Lemma 8 can be weaken as ¢ is only Lipschitz continuous
with respect to x with Lipschitz coefficient no more that 1. In
other words, |¢(p,x,)—¢(p,x,)| <|x;—x,| for all p>0 and
X, X, €ER™.

Pl = (pmi‘(}gng (pr—poxi—x) B Proof. For simplicity, we use X! and X’ instead of X+
and X" in this proof. Note that ||@||;, < 1, then in the view

Then forall 0< s <7< T and (p,x) € E: of (22) and (23), for all x,,x, € R" and p € R., it follows that
IP¢(p.x1) = Pd(p. )l = [E[6(p,. X))~ ¢(p. XD <E[IX! - X]F]. (36)

An application of It6’s formula to |X! — X?* yields that

X=X +E| [ (X =X T 0 OG0 = F (R X B D)+

E f (|G = X2+ (hr X = b X)) = 1X! = X2F) pustr, <,u,,]>)dr] +

E f (X! =X, 8 (XL, (B, ) = 8 (1 X7, (o BXC, ~)>))dWr] + 7
] (106 =) 0 X = X ) = =7 vt | =

b=l 4B | (X0 =X F O X0 G BOX 9N = F (X X)) |+

B[ (106 =X+ (0 X = XN = X! = XCF) pr G I

By assumptions (A,,.) and (A,;), we have the following estimate:

E [Lt (X=X, T (X (e B ) = £ (1 X G BOXE D)) dr] <

LE[ﬂX) -X

L(1+K)E U |x! - x*

2dr].

By assumption (A,) and noting that |y (:,-)| < C,, it follows that

t
s

"B ) = B N | < (38)

B[ (106 = X2+ (. XD = XN =X = X3F) pur s D) | <

C,pE U (1! = X2F +2 [, X) ~ b X2)

2C,(1+L2)pE U X! - x2

’ dr].
We deduce from (37), (38) and (39) that there exists a con-
stant C = C5,,x, such that

(X, - XF] <l —xf+Cp [ E[X - X?F]dr. (40)
Then, Gronwall’s lemma yields that
E [|Xr.r,p,xl.u _ X:.]}.X:.;l|2] < |X1 _ x2|leCp(r7.r). (41)

Therefore, we have

|Ps,1¢(pvxl)_Ps,1¢(p7x2)| <
2 = X,
E[1X; - X7F]

2, = 2,

0.P..¢(p, )| = lim
(42)

< e%cp(rﬂ-) .

This completes the proof of the lemma.
4.2 Metric and convergence of 1" to u

Next we establish a convergence result to the solution of our

0803-7

z)dr] < 39)

FPK function. To this end, we need an appropriate metric
between " and u. Let P(E) be the set of all finite measures v
on B(E) such that v(E) < 1. To make a compact space, we
add an extra point x to E, and denote that E, := EU{x}. Let
E be topologized by a topology 7, we then define a topo-
logy 7* for E, as follows:

ANT cT™,

(ii)) For each compact set C C E, define U-€7* by
Uqs:=(E\NC)U{x}.

We give a bijection ¢ : P(E) — P(E,) by

@)(A) := AN E) + (1 = v(E)5, (A) 43)

for all A€ B(E,) and v € P(E), where & denotes the Dirac
delta measure. Then we define the integral of v € P(E) with
respect to a measurable function ¢ : E, — R as:

|, ¢ = [ gmd0+e(1-VE).  (44)
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For the parameter g>2, we establish the metric d,,
between = (U,)eor and ' =)o as follows (see Ref.
[24]):

dyr (W', ) = sup dy (s 1pt,) - (45)

1€[0,T]

The dy; here is defined as

dBL(w:',m,)=supE[]L ¢<x>(m:'—m,)(dx>\”] NGO
PER; *

where R, is the set of functions ¢ : E, — R that are bounded,
twice continuously differentiable and Lipschitz continuous
satisfying that [1@ll + 10llip < 1, where
[|#]l :=1Inf{C >0: |p(x)|<C, YxeE,}.

The metric d(-,-) on E, is defined as in Ref. [28], that is:
fix x, € E and let {(x) := (1 +|x—x,|)”" for x € E, and

lx=yIAl(x) =], x,y€E,
d(x,y) == 41(x), xeE,y=x;
0, X=y=x*.
Then we have
_ lp(x) — ()]
1o = S dGew “7)

hence for any ¢ € R,, it holds for all x,y € E that

lp(x) = pI < d(x,y) =[x =y AX) = I <lx =yl (48)

Namely, the constraint of ¢ on E is also bounded Lipschitz
continuous with ||¢].;, <1
In view of (44), we have

J,. 900t~ ) (o) =
{ @0 (1 = 1) (@) + ¢(3) (1 = (ED) = (1 = p(ED)) =

(49)
{600 — ) (@) =
<lu:l — M ¢> .
Therefore,
d, (' 1) = sup supE[ |(u; — 8[| (50)

t€[0,T] ¢eRy

To obtain the convergence results, we need the following
assumption:

(Az) The coefficients g:[0,T]xR"XR—-R"™ and
h:[0,T]xR™ — R" satisfy a growth condition. Namely, there
exists a constant K such that for all z€[0,7], x€R" and

YER,

[g(t, x, I < K(L+1xf” + yP), (e, )P < K(1+|xP).

Theorem 9. Let conditions of Lemma 8 and (Ag) hold,
also suppose that E[|X{|] < co for all g>2 and i> 1. Then
for fixed T > 0 and parameters « > g and m > 0, there exists a
constant C, = C, 17z > 0 Which is independent of n,
such that for all n > 1:

1
dq.T(l””?/J) < Cq (V(K,Qamﬂ)"‘ nlil )! (51)
where d,;(-,-) is defined by (45), and
1 kg m
n2+n «, q> —.,K#2q;
: 0 o
v(k,q,m,n):=4 n2Iln(l+n)+n «~, q:E,KqEZq;
a K=q m m
nm4n T« q<—/<¢—
2 m—gq

(52)

Proof. By Lemma 7, it holds for all ¢ € R, and 0<t<T
that

(i = s 8) = g = Hos Po, ) +
I N U
w2, 2P0 XX, ;ﬁ(XA’XS))dWﬁ

(53)
1<y o _ | | N
n g: L (P, d(p X' +h(s,X' )= P, ¢(p, X' )AM' =:
L)+ L) + L(2).
Then we have that
E “(ﬂi’ —,uf,¢>|‘f] =E[()+ L@ + L1 < "

C,ENLOF]+ENLOIT+ENLOID.

In what follows, we will give the estimate of E[|/,(£)|],
E[|L(#)|"] and E[|;(?)|]. One is reminded that during the fol-
lowing proof, the constant C, can be different from line to
line.

For the first term, by using Theorem 2 in Ref. [22], we
have

ENLOI'T < Cppny(k,q,m,n), (55)

where y(k,q,m,n) is defined as in (52). (For this estimate,
Ref. [29] can also be referenced.)

For the second term, noting that ¢eR,, by
Burkholder-Davis—Gundy inequality, Lemma 8 and assump-
tion (Ag,), it holds that

a1 _ l it iNs i l Y iy i
BIL(O] =B ‘ - Z ! a.rPS,,¢<p,,X¢)g{s,Xg, . Zﬂ(xy,xx))dwyl } <

q
E|su AP, ¢(p, X)g| s, X', (XL, X) |[dWi] | <
,euﬁ HZJ ¢(p g[ Zﬁ
2 g
1 2
E|(- P (. X, X~ ) BX.X] <
(n >, ), lo:p.otp Xl 8| 5. Zﬁ( ] )
0803-8 DOI: 10.52396/JUSTC-2023-0163
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a
]Z

<

E [%Zfoe@ g(s,x Z,B(X‘,Xf ]
Gop [ZL [sXA, Z,B(X‘,X’] ]]<

[( [SX’ ZB(X'XJJ )]\

Cfl C ! |2 1 j12 ’
Fp) E[(L(Hm +n;|xy| ]ds) ] (56)

Here we have used the convergence of (p;).;, which leads to the existence of a constant C’ > 0 such that e“” < C’ forall i > 1
q
q =5
In addition, since 5 57 > 1, applying Jensen’s inequality twice to the convex function a(x) = x2 leads to

NSRS

. 1 I
t+ f)1XPds + (— DN IXf|2dS)
n

q
: U IR 2
)2 2 —
[L[1+|x.\,| e Z 1X/| )ds] =32 3 <

(57)
q 4 s [X0Rd g q .9 4 q
-1 "vizd<)2 =1 Jo 1251708 7' "y 2, 23.)2
3 (r2 +(f e ds) +( , ] )<32 (zz +(j x| ds) Z(f x| ds) )
Summing over i = 1,2, -+ ,n, multiplying by P and taking expectation, it follows that
G~ ! L e oG $-1 4 Cviedd L LN eedl)
=D E[(L{Hm +;Z|X{,|]ds) ]<EZE 341(s +(L x| ds) +;Z(I0 e ds) <
i=1 Jj=1 i=1 j=1 (58)
Coypl +2(f' |X"|2ds)% < QZE 1+(j' |X’|2ds)%
0o = nd — o * :
Hence in view of (56) and (58), we have gether with assumption (A,,;), one can verify that there exists
E[ILO] < a constant Cr, > 0 such that
C <& . , n E[1X[] < Cr, (1 +E[IXi[']) = Cr., (1 +E[IX[]), 61
c, E[(L[1+IX§|2+1Z|X§IZ)CIS) ) [IXF] < Cr, (14 BIX{]) = Cp, (L+E[XFD,  (61)
S = see Ref. [31, Theorem 67] for details. Therefore, (59), (60)
59 i
[1+(I X ds) ]: (59) and (61) yield that
nfl
i=1

{u >l [was)g]]

C
— (L+B[IX1]).

(62)

% [1 + % ZE[(L IXj_Izds)% ]] B,

i=1

q
By Minkowski’s integral inequality™ for 7 21 we know

that For the third term, using the mean value theorem to
. g . 3 P, ¢(p;,-) with &_ € [0,h(z, X! )] for all s € (0,7], with the help
E[ (L |Xi|2d5) < (L (E [|X§|q])§ dS) . (60) of Lemma 5, Lemma 8, assumption (Ag,), the boundedness of
(p)is1 and ¥, and by some analogous methods as in the previ-
Meanwhile, through an application of Gronwall’s lemma to- ous one, it holds that

q71 — l : ! i i i i
E[|13(t>|]—E‘HZ]LPLW,,X +h(3,X) = P (P, X.. )dMH

11 o |
E ‘; ZL 53Ps,z¢(Pf,X;, +§;7)h(t,X;,)dM;
7 q
E su P, d(pi, X +EHh(s, X )AM!| | <
sup s Zf Bp, XL+ & (s, XM, ]
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1< ! i i \\2 i \2 i
|y 2 ), 0P X, 4 £0) h X, V(M) | <

E %ZL
CE (%ZL |h(s,xg_)|zds]% <
AN ( I |h(s,xf)|2ds)g
(farmna) <

Cq C [ ! )2 %
w2 +(f0 x| ds) ] -

i=1

<

(s Sel(rmea) )

¢

— (1+E[]x[]).

na!
Note that E[|X;|'| < co, then in view of (45), (46), (55),
(62) and (63), we complete the proof.
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