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Graphical abstract

Yang-Mills bar connection é:F 3’2 =0

on a smooth closed 4-manifold

4

LetG=SU(2) or SO(3),

Then FJ*+F;" hasmost rank one.

4

The (0,2)-part of curvature F‘f"z =0,ie,

the G-bundle P — X has a holomorphic structure.

Yang—Mills bar connection and holomorphic structure.

Public summary
m A connection 4 is called Yang-Mills bar connection if the curvature of the connection 4 satisfies §: po2 = 0.
m When the structure group G = S U(2) or S O(3), we show that rank (F* + F;°) < 1.

m Suppose that H'(X,Z,) = 0, following an idea from Donaldson, we prove that F;* = 0.
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Abstract: In this note, we study the Yang—Mills bar connection A, i.e., the curvature of A obeys & F*=0,0na principal
G-bundle P over a compact complex manifold X. According to the Koszul-Malgrange criterion, any holomorphic struc-
ture on P can be seen as a solution to this equation. Suppose that G =SU(2) or SO(3) and X is a complex surface with
H'(X,Z,) = 0. We then prove that the (0,2)-part curvature of an irreducible Yang—Mills bar connection vanishes, i.e., (P,0,)

is holomorphic.
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1 Introduction

Let E be a C* complex vector bundle of rank r over a com-
pact complex manifold X and H be some reference Her-
mitian inner product in the fibres of E, i.e., (E, H) defines an
Hermitian vector bundle. We shall sometimes consider E is-
sued from its associated GL,(C) principal bundle or from its
associated unitary principal bundle. The classical Newlander—
Nirenberg theorem! states that given an almost complex
structure J over an even dimensional smooth manifold X
then the torsion of J (also called the Nijenhuis tensor) van-
ishes if and only if J defines a complex structure. We denote
by F, the curvature 2-form of a smooth connection A of
(E,H) over a complex manifold X. We will be interested in
the bundle version of the Newlander-Nirenberg theorem as
first proven in Ref. [8] (also shown in Ref. [3, Theorem
2.1.53]). It states that unitary connections satisfying F3” =0
are in one to one correspondence with holomorphic
structures:

Koszul-Malgrange criterion. Let A be a smooth unitary
connection of a C* Hermitian bundle (E, H) over a complex
manifold X. Then E has a holomorphic structure if and only
if F=0.

The calculus of variations of Yang—Mills in four-dimen-
sions has naturally led to the definition of Sobolev connec-
tions. One of the goals of Ref. [10] is to extend this identifica-
tion to Sobolev connections. More precisely, the authors ana-
lyzed the weak holomorphic structures, that is Sobolev con-
nections (see Ref. [10, Definition 1.1]) satisfying the integ-
rability condition F}’ = 0.

We note that in the decomposition for the curvature of unit-
ary connection A:

Fo=F2+F" 4+ F,

0801-1

The Kozsul-Malgrange criterion suggests that we consider
the Yang—Mills bar functional

E'(A) = |IF°IP

which is the square of the L*-norm of the (0,2)-component
F%* of the curvature on (E,H). Ref. [6] introduced the
Yang-Mills bar equation as the Euler-Lagrange equation for
the Yang-Mills bar functional. The solutions of the
Yang—Mills bar equation are called Yang—Mills bar connec-
tions.

Definition 1.1.5 A connection A on a compact complex
manifold is said to be a Yang-Mills bar connection if the
(0,2)-part of its curvature is harmonic, i.e.,

0,F%*=0.

Since a holomorphic connection on a complex bundle of
rank r>?2 over a compact complex manifold X, dim:X >2,
is overdetermined, and the Yang—Mills bar connection is
moduli invariant under the complex gauge group of the com-
plex vector bundle E. The Yang—Mills bar connection has an
advantage over the holomorphic connection. Thus, Ref. [6]
suggested that we can use the Yang—Mills bar equation to
find useful sufficient conditions under which a complex vec-
tor bundle carries a holomorphic structure. The existence of a
holomorphic structure on complex vector bundles over pro-
jective algebraic manifolds could be a key step in solving the
Hodge conjecture. A particular result (see Ref. [6, Theorem
4.25]) which states that any Yang—Mills bar connection on a
compact Kidhler surface with positive Ricci curvature is holo-
morphic. In higher-dimensional cases, Stern proved that on a
compact Calabi—Yau 3-fold X with Hol(X) = SO(3), if the
connection A on a principal G-bundle P over X is a stable
critical point of E'(A), then F$*=0, ie, (Pd,) is
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holomorphic (see Ref. [11, Theorem 6.21]).

In this note we consider the Yang—Mills bar connection A
on a SU(2) or SO(3)-bundle P over a compact complex sur-
face. A self-dual two-form B € Q'(X, g,) which takes value in
g, is said to be of rank r if, when considered as a section of
Hom(A**), B(x) has rank less than or equal to r at every point
x €X (see Ref. [12, Defintion 1.5]). If the structure group of
the principal bundle P is either SU(2) or SO(3), then the
rank of any B must be less than or equal to 3. The key point
in the proof of the following result is that F§*+ F;’ has at
most rank one (see Proposition 3.1).

Theorem 1.1. Let (X,g) be a compact complex surface
with H'(X,Z,) =0, P be a SU(2) or SO(3)-bundle over X
and A be a connection on P. Suppose that A is an irreducible
Yang-Mills bar connection. Then F9*=0, ie., (P,0,) is
holomorphic

Remark 1.1. The following example shows that the condi-
tion for irreducible connection in Theorem 1.1 is necessary.
Let 7* be a 2-dimensional complex torus with coordinates
Z=x'+V=1y', Z2=xX+V-1y". It is easy to see that
m(T*) = ZXZXZXZ. Therefore, H'(T*,Z,) =0. Let L > T*
be a complex line bundle whose Chern class is represented by
the cohomology class ¢ (L) of dz' Adz* +dZ' AdZ*. Let A be a
unitary connection of L. Then the curvature

F, = V=1(dz' AdZ +d7' Ad?) + V-1da,

where a € Q'(T*). The new connection A’=A—a has the
curvature V—1(dz' AdZ +dz' AdZ). However, according to
the Hodge theorem, we observe that L has no holomorphic
structure (see Ref. [6, 3.21]). One can see that the bundle
L@ L™ also carries no holomorphic structure. In general, the
Hodge theory implies that on any Hermitian complex line
bundle over a compact complex manifold there is a
Yang—Mills bar connection which realizes the infimum of the
energy E'(A).

2 Preliminaries

2.1 Yang-Mills bar connection

Let (X,g) be a smooth complex surface with a (1,1)-form w
and P be a principal G-bundle over X with G being a com-
pact Lie group. We denote by A, the set of all connections.
For any connection A on P. We have the covariant exterior
derivatives d, : Q*(X,g,) = 2“'(X,g,). Like the canonical
splitting the exterior derivatives d = 8+, decomposes over
X into d, = 8, +0,. We also denote by Q"4(X,g5) the space of
C>-(p,q) forms on g :=g,®C.
We define a Hermitian inner product (:,-) on (X, g;) by

<a"ﬁ>L2(X) = L(Cl,ﬂ)(x)dvolg,

(@.B)@)dvol, = (a A +B),

where * is the C-linear extension of the Hodge operator over
complex forms and @ is the conjugation on the bundle g, ® C-
forms which is defined naturally. One can also see Ref. [5,
Page 99] or Ref. [4]. Denote by L, the operator of exterior
multiplication by the Kéhler form w:
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L,=wAa, acX,g5),

and, as usual, let A, denote its pointwise adjoint, i.e.,

(Ava.B) = e, L,B).

It is well known that A, = ' oL, 0x. We can decompose
the curvature, F,, as

0,2 1,1 1 2,0
Fy=FP+Fi+5AF @0+ Fy.

where F,j =F;' 1A, F,®@w. Ref. [11] defined two new
energies:

E(A):=|IFI,  E"(A) :=IAFLI.

We can write the Yang—Mills functional as
YM(A) =4IF 1P + 1A FAll + L tw(FAAFy) =
4E'(A) + E"(A) + topological constant.

The energy functional ||A,F,|* plays an important role in
the study of Hermitian-Einstein connections, see Refs. [2, 3,
13]. If the connection A is a Hermitian—Yang—Mills connec-
tion, i.e.,

F®=0, AJF,=Al,

where A is a constant, then the Yang-Mills functional is min-
imum. Suppose that an integrable connection A € A" on a
holomorphic bundle over a Kéhler surface is Yang—Mills,
then A,F, is parallel, i.e., V,A,F, =0.
Using the formula
FY =FY+10,a" +£a" Aa",

A+ta
we get the first variation of energy E’(A) is given by
1d

S E A+l = [ (G.Fa).

One can see that the Yang—Mills bar connection

9, F*=0
is a critical point of E’(A). Using the Bianchi identity
d,F* = 0, a Yang-Mills bar connection A is equivalent to the
(0,2)-part, F}*, of the curvature of the connection A is har-
monic with respect to the Laplacian operator A;, , i.e.,

AgAFg’z =0.

2.2 Irreducible connection

In this section, we first recall a definition of irreducible con-
nection on a principal G-bundle P, where G being a compact,
semisimple Lie group. Given a connection A on a principal G-
bundle P over X. We can define the stabilizer I, of A in the
gauge group G, by

I'y:={geGlg(A)=A)}.

One can also see Ref. [3, Section 4.2.2]. A connection A is
called reducible if the connection A whose stabilizer I', is
larger than the center C(G) of G. Otherwise, the connections
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are irreducible, they satisfy I', = C(G). It is easy to see that a
connection A is irreducible when it admits no nontrivial cov-
ariantly constant Lie algebra-value 0-form, i.e.,

kerd, N Q°(X,g,) = 0.

The most useful definition of reducibility in our note is the
following.

Definition 2.1.'"> > B A connection A on a principal
SU(2) or SO3) bundle P — X is reducible if one of the fol-
lowing equivalent conditions is satisfied:

(D The stabilizer of A under the group of gauge transform-
ations has a positive dimension.

2 There exists a nonzero I" € 2°(X, g,) such that d,I" = 0.

(@ The holonomy of A is contained in some SO(2)
subgroup.

We recall the definition of locally reducible connection on
a principal S U(2) or S O(3) bundle P.

Definition 2.2.0> Pefniien 211 A connection A on a principal
SUQR) or SO3) bundle P over a smooth closed Riemanian
manifold X is locally reducible if there is an open cover of X
such that on each of the open subsets, there is a nonzero, cov-
ariantly constant section of g.

With regard to the local reducibility as in Definition 2.2,
Tanaka observed that

Proposition 2.1.!'> Preeesiin B3 A conpection A on a principal
SU2) or SO3)-bundle P — X is locally reducible if and
only if the holonomy of A is contained in some O(2)
subgroup.

Remark 2.1. Let A be a connection on a principal SU(2)
or § O(3) bundle P. If m,(X) has no subgroup of index two, it
follows that H'(X,Z,) =0, then every locally reducible con-
nection A is reducible (see Ref. [12, Remark B.5]). In particu-
lar, a locally reducible connection on a closed simply connec-
ted manifold is reducible.

3 Proof of main theorem

Let (X,w) be a compact Kéhler surface with a smooth Kéhler
(1,1)-form w. Given an orthonormal coframe {e,,e,,e,,e;} on
X for which w = €”" + €, where ¢/ = ¢ Ae/. We define

d7' =’ + V-1e', df =e*+ V-1¢é°,
dz' = — V=l¢', d7=e—V-1¢',
so that
V-1

w= (dz' NdZ' +dZ7 NdTD).

2
For any B € Q(X,g,), we can write

B =B, (e" +e*)+ By(e” + &) + B;(e™ +e"),

where B;, i =1,2,3, takes value in g,. Then we can define S8
as follows:

1
Bi=5 (B~ V=1B,)dz' AdZ.

Hence

0801-3

B = —%(32 + V=1B,)dz' A dZ.
We can rewrite B as
B:=Bw+p-p4.
We define a bilinear map
[o.0] : Q" (X,0,) ® Q™" (X,0,) = (X, 0,)

1
by 5[',']gz»®[',']gp (see Ref. [7, Appendxi A]). In a direct
calculation (see Ref. [7, Section 7.1]),

—%[B.B] =[B,,B;](e" +€®) +[B;, B, ](e” + &’ )+
[B,,B,](e" +e"™).

Let P be a principal G-bundle over a closed, smooth
Riemannian four-dimensional manifold (X, g) with Riemanni-
an metric g. We recall a notion of rank of a section
B e Q"(X,95) (see Refs. [1] or [12, Definiton 1.5]. We denote
d=dimG. Choose local frames for g, and A*(T"X),
(dimA*(T"X) = 3), then the section B is represented by a
d % 3 matrix-valued function with respect to the local frames.
The rank of B at a point x € X is the rank of the matrix at x.
We denote by rank(B) the maximum of the pointwise rank
over X. The pointwise rank of B also provides a stratification
of the manifold X, namely,

X'(B)={xe X :rank(B(x)) =i}, 0O<i<rank(B). (1)

The top rank stratum is a nonempty open subset of X. If the
structure group of the principal bundle P is either SU(2) or
S O(3), then the possibilities for the rank of B are less than or
equal to 3. We next recall the following from Ref. [7, Sec-
tion 4.11]

Lemma 3.1.0'>tmm 51 T et P — X be a principal SU(2) or
SO(3) bundle over a closed four-dimensional Riemannian
manifold X. If B e Q*(X,g,) satisfies [B.B] = 0, then the rank
of B is at most one. Furthermore,

X'(B)={x€ X :B(x)+0).

Proof. Since the rank of B is at most one, it is easy to see
X =X, (B)UX,(B). Noting that X,(B) is the zero set of B.
Therefore, X'(B) = {x € X : B(x) # 0}.

We then obtain that

Proposition 3.1. Let A be a connection on a principal
SU(2) or SO(3)-bundle over a compact Kéhler surface. If the
connection A is a Yang—Mills bar connection, then F3* + F}°
has at most rank one.

Proof. Since §: 02 = (), we have

0=0,0,F = —=[Fy’ AF ). ()
In an orthonormal coframe, we can write F” as
F3? = (B, + V=1B,)dz' NdZ,

where B, and B, take value in Lie algebra su(2) or so(3).
Thus
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«F'? = (=B, + V—1B,)dz' AdZ.
Following Eq. (2), we obtain that
0=[B,+ V-1B,,-B, + V=1B,] =
- V=1[B,.B,]+ V-1[B,.B,] =
2V-1[B,,B,].

Hence

0=[B,,B,]. 3)

Note that F3> + F>° is a self-dual two form that takes value
in g,. Following Eq. (3), we obtain

[FO% + F2°.F%% + F2°] = 0.

Therefore, following Lemma 3.1, [F3” + F>°] has at most
rank one.

We now prove a useful lemma that will be crucial in the
proof of Theorem 1.1. The idea follows from Ref. [3, Lemma
4.3.25].

Lemma 3.2. Let X be a smooth closed Riemannian four-
manifold with H'(X,Z,) =0, and let P — X be a principal G-
bundle with structure group G being either S U(2) or S O(3).
Let Bekerd,” NQ*(X,a,) be a nonzero self-dual 2-form that
takes value in g,. If B has at most rank 1, the connection A is
reducible.

Proof. Let Z¢ denote the complement of the zero set of B.
By unique continuation of the elliptic equation d;"B =0, Z° is
either empty or dense. If Z° is not empty, then ¢ has rank one
and is nowhere vanishing on Z¢ (see Lemma 3.1). We denote
by {U,} a finite open cover of X. Locally, in each open set
U,, we can write

B 1y,=5,9w,.

where s, is a section (g, U,) with |s,| =1 and w, € Q"(U,).
It is easy to see w,(x)#0, xeZ°NU,. Now the condition
|s,| =1 implies that (d,s,,s,)=0 on U,. The equation
d;”B =0 implies that

d,s, Nw,+s,dw, = 0.

Therefore, we obtain

d,s,Nw,=0, dw,=0.

Since a nonvanishing, pure self-dual 2-form w, gives an
isomorphism from Q'(Z°NU,) to &*(Z°NU,), s, is covari-
ant, ie., V,5,=0 on Z°NU,. Since Z° is dense on X,
V.s, =0 all over U,. Hence, the connection A is locally redu-
cible. Since H'(X,Z,) =0, A is reducible (see Remark 2.1).

Following Lemma 3.2, we then have

Corollary 3.1. Let X be a smooth closed Riemannian four-
manifold with H'(X,Z,) =0, and let P — X be a principal G-
bundle with structure group G being either S U(2) or S O(3).
Let Bekerd,"NQ*(X,9;). If d;"B=0 and [B.B] =0, the
either B vanishes or the connection A is reducible.

08014

Proof of Theorem 1.1. We now begin to prove Theorem
1.1. Following Proposition 3.1, (F$* + F;°) € Q*(X,g,) has at
most rank one. Noting that

dy'(Fy + FY) = 0,Fy +0,F;" = 0.

According to Corollary 3.1, F}” vanishes over all of X since
connection A is irreducible.
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