[1] |
Chong L N, Wen J G, Song E H, et al. Synergistic Co–Ir/Ru composite electrocatalysts impart efficient and durable oxygen evolution catalysis in acid. Advanced Energy Materials, 2023, 13 (37): 2302306. doi: 10.1002/aenm.202302306
|
[2] |
Lu X, Xue H, Gong H, et al. 2D layered double hydroxide nanosheets and their derivatives toward efficient oxygen evolution reaction. Nano-Micro Letters, 2020, 12 (1): 86. doi: 10.1007/s40820-020-00421-5
|
[3] |
Liao H X, Luo T, Tan P F, et al. Unveiling role of sulfate ion in nickel-iron (oxy)hydroxide with enhanced oxygen-evolving performance. Advanced Functional Materials, 2021, 31 (38): 2102772. doi: 10.1002/adfm.202102772
|
[4] |
Zhang S H, Huang S C, Sun F Z, et al. Exciting lattice oxygen of nickel-iron bimetal alkoxide for efficient electrochemical oxygen evolution reaction. Journal of Energy Chemistry, 2024, 88: 194–201. doi: 10.1016/j.jechem.2023.09.013
|
[5] |
Shi M M, Bao D, Yan J M, et al. Coordination and architecture regulation of electrocatalysts for sustainable hydrogen energy conversion. Accounts of Materials Research, 2024, 5 (2): 160–172. doi: 10.1021/accountsmr.3c00197
|
[6] |
Tang Y, Wu C, Zhang Q, et al. Accelerated surface reconstruction through regulating the solid-liquid interface by oxyanions in perovskite electrocatalysts for enhanced oxygen evolution. Angewandte Chemie International Edition, 2023, 62 (37): e202309107. doi: 10.1002/anie.202309107
|
[7] |
Wang X, Xi S, Huang P, et al. Pivotal role of reversible NiO6 geometric conversion in oxygen evolution. Nature, 2022, 611 (7937): 702–708. doi: 10.1038/s41586-022-05296-7
|
[8] |
Huang Y, Jiang L W, Shi B Y, et al. Highly efficient oxygen evolution reaction enabled by phosphorus doping of the Fe electronic structure in iron-nickel selenide nanosheets. Advanced Science, 2021, 8 (18): 2101775. doi: 10.1002/advs.202101775
|
[9] |
Zeng S P, Shi H, Dai T Y, et al. Lamella-heterostructured nanoporous bimetallic iron-cobalt alloy/oxyhydroxide and cerium oxynitride electrodes as stable catalysts for oxygen evolution. Nature Communications, 2023, 14 (1): 1811. doi: 10.1038/s41467-023-37597-4
|
[10] |
Xin S S, Tang Y, Jia B H, et al. Coupling adsorbed evolution and lattice oxygen mechanism in Fe-Co(OH)2/Fe2O3 heterostructure for enhanced electrochemical water oxidation. Advanced Functional Materials, 2023, 33 (45): 2305243. doi: 10.1002/adfm.202305243
|
[11] |
Liu H, Zhang T F, Cui D, et al. Defective ferrocene-based metal–organic frameworks for efficient solar-powered water oxidation via the ligand competition and etching effect. Journal of Colloid and Interface Science, 2024, 657: 664–671. doi: 10.1016/j.jcis.2023.12.024
|
[12] |
Wu H, Huang Q X, Shi Y Y, et al. Electrocatalytic water splitting: Mechanism and electrocatalyst design. Nano Research, 2023, 16 (7): 9142–9157. doi: 10.1007/s12274-023-5502-8
|
[13] |
Iqbal S, Safdar B, Hussain I, et al. Trends and prospects of bulk and single-atom catalysts for the oxygen evolution reaction. Advanced Energy Materials, 2023, 13 (17): 2203913. doi: 10.1002/aenm.202203913
|
[14] |
Zhang N, Du J Y, Zhou N, et al. High-valence metal-doped amorphous IrO x as active and stable electrocatalyst for acidic oxygen evolution reaction. Chinese Journal of Catalysis, 2023, 53: 134–142. doi: 10.1016/S1872-2067(23)64517-6
|
[15] |
Zhao F Z, Mao X Y, Zheng X, et al. Roles of the self-reconstruction layer in the catalytic stability of a NiFeP catalyst during the oxygen evolution reaction. Journal of Materials Chemistry A, 2023, 11 (1): 276–286. doi: 10.1039/D2TA06514B
|
[16] |
Chang J W, Zhang Q, Yu J K, et al. A Fe single atom seed-mediated strategy toward Fe3C/Fe–N–C catalysts with outstanding bifunctional ORR/OER activities. Advanced Science, 2023, 10 (22): 2301656. doi: 10.1002/advs.202301656
|
[17] |
Seitz L C, Dickens C F, Nishio K, et al. A highly active and stable IrO x/SrIrO3 catalyst for the oxygen evolution reaction. Science, 2016, 353 (6303): 1011–1014. doi: 10.1126/science.aaf5050
|
[18] |
Bai X F, Zhang X P, Sun Y J, et al. Low ruthenium content confined on boron carbon nitride as an efficient and stable electrocatalyst for acidic oxygen evolution reaction. Angewandte Chemie International Edition, 2023, 62 (38): e202308704. doi: 10.1002/anie.202308704
|
[19] |
Zheng Y R, Vernieres J, Wang Z B, et al. Monitoring oxygen production on mass-selected iridium–tantalum oxide electrocatalysts. Nature Energy, 2022, 7 (1): 55–64. doi: 10.1038/s41560-021-00948-w
|
[20] |
Ma Y D, Zhang H, Xia J, et al. Reduced CoFe2O4/graphene composite with rich oxygen vacancies as a high efficient electrocatalyst for oxygen evolution reaction. International Journal of Hydrogen Energy, 2020, 45 (19): 11052–11061. doi: 10.1016/j.ijhydene.2020.02.045
|
[21] |
Cao D, Wang J Y, Xu H X, et al. Construction of dual-site atomically dispersed electrocatalysts with Ru-C5 single atoms and Ru-O4 nanoclusters for accelerated alkali hydrogen evolution. Small, 2021, 17 (31): 2101163. doi: 10.1002/smll.202101163
|
[22] |
He T W, Santiago A R P, Kong Y C, et al. Atomically dispersed heteronuclear dual-atom catalysts: a new rising star in atomic catalysis. Small, 2022, 18 (12): 2106091. doi: 10.1002/smll.202106091
|
[23] |
Zheng X B, Li B B, Wang Q S, et al. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Research, 2022, 15 (9): 7806–7839. doi: 10.1007/s12274-022-4429-9
|
[24] |
Wang Z, Jin X Y, Xu R J, et al. Cooperation between dual metal atoms and nanoclusters enhances activity and stability for oxygen reduction and evolution. ACS Nano, 2023, 17 (9): 8622–8633. doi: 10.1021/acsnano.3c01287
|
[25] |
Chen J J, Wang S D, Li Z Y, et al. Selective reduction of NO into N2 catalyzed by Rh1-doped cluster anions RhCe2O3-5−. Journal of the American Chemical Society, 2023, 145 (33): 18658–18667. doi: 10.1021/jacs.3c06565
|
[26] |
Lee S, Bai L, Hu X. Deciphering iron-dependent activity in oxygen evolution catalyzed by nickel–iron layered double hydroxide. Angewandte Chemie International Edition, 2020, 59 (21): 8072–8077. doi: 10.1002/anie.201915803
|
[27] |
Zhang Z R, Feng C, Liu C X, et al. Electrochemical deposition as a universal route for fabricating single-atom catalysts. Nature Communications, 2020, 11 (1): 1215. doi: 10.1038/s41467-020-14917-6
|
[28] |
Yu J, Li Z, Liu T, et al. Morphology control and electronic tailoring of CoxAy (A = P, S, Se) electrocatalysts for water splitting. Chemical Engineering Journal, 2023, 460: 141674. doi: 10.1016/j.cej.2023.141674
|
[29] |
Zhuang L, Ge L, Yang Y, et al. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Advanced Materials, 2017, 29 (17): 1606793. doi: 10.1002/adma.201606793
|
[30] |
Zheng X B, Yang J R, Xu Z F, et al. Ru–Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angewandte Chemie International Edition, 2022, 61 (32): e202205946. doi: 10.1002/anie.202205946
|
[31] |
Li W, Gao X, Xiong D, et al. Hydrothermal synthesis of monolithic Co3Se4 nanowire electrodes for oxygen evolution and overall water splitting with high efficiency and extraordinary catalytic stability. Advanced Energy Materials, 2017, 7 (17): 1602579. doi: 10.1002/aenm.201602579
|
[32] |
Yan L T, Cao L, Dai P C, et al. Metal-organic frameworks derived nanotube of nickel–cobalt bimetal phosphides as highly efficient electrocatalysts for overall water splitting. Advanced Functional Materials, 2017, 27 (40): 1703455. doi: 10.1002/adfm.201703455
|
[33] |
Li M, Wang X, Liu K, et al. Reinforcing Co–O covalency via Ce(4f)–O(2p)–Co(3d) gradient orbital coupling for high-efficiency oxygen evolution. Advanced Materials, 2023, 35 (30): 2302462. doi: 10.1002/adma.202302462
|
[34] |
Feng C, Zhang Z R, Wang D D, et al. Tuning the electronic and steric interaction at the atomic interface for enhanced oxygen evolution. Journal of the American Chemical Society, 2022, 144 (21): 9271–9279. doi: 10.1021/jacs.2c00533
|
[35] |
Kumar P, Kannimuthu K, Zeraati A S, et al. High-density cobalt single-atom catalysts for enhanced oxygen evolution reaction. Journal of the American Chemical Society, 2023, 145 (14): 8052–8063. doi: 10.1021/jacs.3c00537
|
[36] |
Li Y, Li F M, Meng X Y, et al. Ultrathin Co3O4 nanomeshes for the oxygen evolution reaction. ACS Catalysis, 2018, 8 (3): 1913–1920. doi: 10.1021/acscatal.7b03949
|
[37] |
Hou Y, Zuo F, Dagg A, et al. A three-dimensional branched cobalt-doped α-Fe2O3 nanorod/MgFe2O4 heterojunction array as a flexible photoanode for efficient photoelectrochemical water oxidation. Angewandte Chemie International Edition, 2013, 52 (4): 1248–1252. doi: 10.1002/anie.201207578
|
JUSTC-2024-0046 Supporting information.doc |
Figure 2. Electronic structure characterization of Co clusters on Con/Ni(OH)2 and ConIr1/Ni(OH)2 and Ir single atoms on Ir1/Ni(OH)2 and ConIr1/Ni(OH)2. Normalized XANES (a) and EXAFS (b) spectra without phase correction at the Co K-edge of Con/Ni(OH)2 and ConIr1/Ni(OH)2. Co foil and Co2O3 were used as references. Normalized XANES (c) and EXAFS (d) spectra at the Ir L3 edge of Ir1/Ni(OH)2 and ConIr1/Ni(OH)2. Ir foil and IrO2 were used as references.
Figure 3. Electrocatalytic performances toward the OER. (a) Polarization curves of Ni(OH)2, Con/Ni(OH)2, Ir1/Ni(OH)2, ConIr1/Ni(OH)2 and IrO2. The measurements were conducted in 1.0 mol·L−1 KOH. (b) Overpotentials at a current density of 10 mA·cm−2 for Ni(OH)2, Con/Ni(OH)2, Ir1/Ni(OH)2, ConIr1/Ni(OH)2 and IrO2. (c) Mass activities and turnover frequencies of Con/Ni(OH)2 and ConIr1/Ni(OH)2 at an overpotential of 300 mV. (d) Comparison of the turnover frequencies of reported Co-based catalysts and ConIr1/Ni(OH)2 for the OER. (e) Tafel slopes of Ni(OH)2, Ir1/Ni(OH)2, Con/Ni(OH)2, and ConIr1/Ni(OH)2. (f) Chronopotentiometric curve of ConIr1/Ni(OH)2 toward the OER at a current density of 10 mA·cm−2 for 15 h.
[1] |
Chong L N, Wen J G, Song E H, et al. Synergistic Co–Ir/Ru composite electrocatalysts impart efficient and durable oxygen evolution catalysis in acid. Advanced Energy Materials, 2023, 13 (37): 2302306. doi: 10.1002/aenm.202302306
|
[2] |
Lu X, Xue H, Gong H, et al. 2D layered double hydroxide nanosheets and their derivatives toward efficient oxygen evolution reaction. Nano-Micro Letters, 2020, 12 (1): 86. doi: 10.1007/s40820-020-00421-5
|
[3] |
Liao H X, Luo T, Tan P F, et al. Unveiling role of sulfate ion in nickel-iron (oxy)hydroxide with enhanced oxygen-evolving performance. Advanced Functional Materials, 2021, 31 (38): 2102772. doi: 10.1002/adfm.202102772
|
[4] |
Zhang S H, Huang S C, Sun F Z, et al. Exciting lattice oxygen of nickel-iron bimetal alkoxide for efficient electrochemical oxygen evolution reaction. Journal of Energy Chemistry, 2024, 88: 194–201. doi: 10.1016/j.jechem.2023.09.013
|
[5] |
Shi M M, Bao D, Yan J M, et al. Coordination and architecture regulation of electrocatalysts for sustainable hydrogen energy conversion. Accounts of Materials Research, 2024, 5 (2): 160–172. doi: 10.1021/accountsmr.3c00197
|
[6] |
Tang Y, Wu C, Zhang Q, et al. Accelerated surface reconstruction through regulating the solid-liquid interface by oxyanions in perovskite electrocatalysts for enhanced oxygen evolution. Angewandte Chemie International Edition, 2023, 62 (37): e202309107. doi: 10.1002/anie.202309107
|
[7] |
Wang X, Xi S, Huang P, et al. Pivotal role of reversible NiO6 geometric conversion in oxygen evolution. Nature, 2022, 611 (7937): 702–708. doi: 10.1038/s41586-022-05296-7
|
[8] |
Huang Y, Jiang L W, Shi B Y, et al. Highly efficient oxygen evolution reaction enabled by phosphorus doping of the Fe electronic structure in iron-nickel selenide nanosheets. Advanced Science, 2021, 8 (18): 2101775. doi: 10.1002/advs.202101775
|
[9] |
Zeng S P, Shi H, Dai T Y, et al. Lamella-heterostructured nanoporous bimetallic iron-cobalt alloy/oxyhydroxide and cerium oxynitride electrodes as stable catalysts for oxygen evolution. Nature Communications, 2023, 14 (1): 1811. doi: 10.1038/s41467-023-37597-4
|
[10] |
Xin S S, Tang Y, Jia B H, et al. Coupling adsorbed evolution and lattice oxygen mechanism in Fe-Co(OH)2/Fe2O3 heterostructure for enhanced electrochemical water oxidation. Advanced Functional Materials, 2023, 33 (45): 2305243. doi: 10.1002/adfm.202305243
|
[11] |
Liu H, Zhang T F, Cui D, et al. Defective ferrocene-based metal–organic frameworks for efficient solar-powered water oxidation via the ligand competition and etching effect. Journal of Colloid and Interface Science, 2024, 657: 664–671. doi: 10.1016/j.jcis.2023.12.024
|
[12] |
Wu H, Huang Q X, Shi Y Y, et al. Electrocatalytic water splitting: Mechanism and electrocatalyst design. Nano Research, 2023, 16 (7): 9142–9157. doi: 10.1007/s12274-023-5502-8
|
[13] |
Iqbal S, Safdar B, Hussain I, et al. Trends and prospects of bulk and single-atom catalysts for the oxygen evolution reaction. Advanced Energy Materials, 2023, 13 (17): 2203913. doi: 10.1002/aenm.202203913
|
[14] |
Zhang N, Du J Y, Zhou N, et al. High-valence metal-doped amorphous IrO x as active and stable electrocatalyst for acidic oxygen evolution reaction. Chinese Journal of Catalysis, 2023, 53: 134–142. doi: 10.1016/S1872-2067(23)64517-6
|
[15] |
Zhao F Z, Mao X Y, Zheng X, et al. Roles of the self-reconstruction layer in the catalytic stability of a NiFeP catalyst during the oxygen evolution reaction. Journal of Materials Chemistry A, 2023, 11 (1): 276–286. doi: 10.1039/D2TA06514B
|
[16] |
Chang J W, Zhang Q, Yu J K, et al. A Fe single atom seed-mediated strategy toward Fe3C/Fe–N–C catalysts with outstanding bifunctional ORR/OER activities. Advanced Science, 2023, 10 (22): 2301656. doi: 10.1002/advs.202301656
|
[17] |
Seitz L C, Dickens C F, Nishio K, et al. A highly active and stable IrO x/SrIrO3 catalyst for the oxygen evolution reaction. Science, 2016, 353 (6303): 1011–1014. doi: 10.1126/science.aaf5050
|
[18] |
Bai X F, Zhang X P, Sun Y J, et al. Low ruthenium content confined on boron carbon nitride as an efficient and stable electrocatalyst for acidic oxygen evolution reaction. Angewandte Chemie International Edition, 2023, 62 (38): e202308704. doi: 10.1002/anie.202308704
|
[19] |
Zheng Y R, Vernieres J, Wang Z B, et al. Monitoring oxygen production on mass-selected iridium–tantalum oxide electrocatalysts. Nature Energy, 2022, 7 (1): 55–64. doi: 10.1038/s41560-021-00948-w
|
[20] |
Ma Y D, Zhang H, Xia J, et al. Reduced CoFe2O4/graphene composite with rich oxygen vacancies as a high efficient electrocatalyst for oxygen evolution reaction. International Journal of Hydrogen Energy, 2020, 45 (19): 11052–11061. doi: 10.1016/j.ijhydene.2020.02.045
|
[21] |
Cao D, Wang J Y, Xu H X, et al. Construction of dual-site atomically dispersed electrocatalysts with Ru-C5 single atoms and Ru-O4 nanoclusters for accelerated alkali hydrogen evolution. Small, 2021, 17 (31): 2101163. doi: 10.1002/smll.202101163
|
[22] |
He T W, Santiago A R P, Kong Y C, et al. Atomically dispersed heteronuclear dual-atom catalysts: a new rising star in atomic catalysis. Small, 2022, 18 (12): 2106091. doi: 10.1002/smll.202106091
|
[23] |
Zheng X B, Li B B, Wang Q S, et al. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Research, 2022, 15 (9): 7806–7839. doi: 10.1007/s12274-022-4429-9
|
[24] |
Wang Z, Jin X Y, Xu R J, et al. Cooperation between dual metal atoms and nanoclusters enhances activity and stability for oxygen reduction and evolution. ACS Nano, 2023, 17 (9): 8622–8633. doi: 10.1021/acsnano.3c01287
|
[25] |
Chen J J, Wang S D, Li Z Y, et al. Selective reduction of NO into N2 catalyzed by Rh1-doped cluster anions RhCe2O3-5−. Journal of the American Chemical Society, 2023, 145 (33): 18658–18667. doi: 10.1021/jacs.3c06565
|
[26] |
Lee S, Bai L, Hu X. Deciphering iron-dependent activity in oxygen evolution catalyzed by nickel–iron layered double hydroxide. Angewandte Chemie International Edition, 2020, 59 (21): 8072–8077. doi: 10.1002/anie.201915803
|
[27] |
Zhang Z R, Feng C, Liu C X, et al. Electrochemical deposition as a universal route for fabricating single-atom catalysts. Nature Communications, 2020, 11 (1): 1215. doi: 10.1038/s41467-020-14917-6
|
[28] |
Yu J, Li Z, Liu T, et al. Morphology control and electronic tailoring of CoxAy (A = P, S, Se) electrocatalysts for water splitting. Chemical Engineering Journal, 2023, 460: 141674. doi: 10.1016/j.cej.2023.141674
|
[29] |
Zhuang L, Ge L, Yang Y, et al. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Advanced Materials, 2017, 29 (17): 1606793. doi: 10.1002/adma.201606793
|
[30] |
Zheng X B, Yang J R, Xu Z F, et al. Ru–Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angewandte Chemie International Edition, 2022, 61 (32): e202205946. doi: 10.1002/anie.202205946
|
[31] |
Li W, Gao X, Xiong D, et al. Hydrothermal synthesis of monolithic Co3Se4 nanowire electrodes for oxygen evolution and overall water splitting with high efficiency and extraordinary catalytic stability. Advanced Energy Materials, 2017, 7 (17): 1602579. doi: 10.1002/aenm.201602579
|
[32] |
Yan L T, Cao L, Dai P C, et al. Metal-organic frameworks derived nanotube of nickel–cobalt bimetal phosphides as highly efficient electrocatalysts for overall water splitting. Advanced Functional Materials, 2017, 27 (40): 1703455. doi: 10.1002/adfm.201703455
|
[33] |
Li M, Wang X, Liu K, et al. Reinforcing Co–O covalency via Ce(4f)–O(2p)–Co(3d) gradient orbital coupling for high-efficiency oxygen evolution. Advanced Materials, 2023, 35 (30): 2302462. doi: 10.1002/adma.202302462
|
[34] |
Feng C, Zhang Z R, Wang D D, et al. Tuning the electronic and steric interaction at the atomic interface for enhanced oxygen evolution. Journal of the American Chemical Society, 2022, 144 (21): 9271–9279. doi: 10.1021/jacs.2c00533
|
[35] |
Kumar P, Kannimuthu K, Zeraati A S, et al. High-density cobalt single-atom catalysts for enhanced oxygen evolution reaction. Journal of the American Chemical Society, 2023, 145 (14): 8052–8063. doi: 10.1021/jacs.3c00537
|
[36] |
Li Y, Li F M, Meng X Y, et al. Ultrathin Co3O4 nanomeshes for the oxygen evolution reaction. ACS Catalysis, 2018, 8 (3): 1913–1920. doi: 10.1021/acscatal.7b03949
|
[37] |
Hou Y, Zuo F, Dagg A, et al. A three-dimensional branched cobalt-doped α-Fe2O3 nanorod/MgFe2O4 heterojunction array as a flexible photoanode for efficient photoelectrochemical water oxidation. Angewandte Chemie International Edition, 2013, 52 (4): 1248–1252. doi: 10.1002/anie.201207578
|