[1] |
Liu S, Dun C C, Wei J L, et al. Creation of hollow silica-fiberglass soft ceramics for thermal insulation. Chem. Eng. J., 2023, 454: 140134. doi: 10.1016/j.cej.2022.140134
|
[2] |
Lin X C, Li S L, Li W X, et al. Thermo-responsive self-ceramifiable robust aerogel with exceptional strengthening and thermal insulating performance at ultrahigh temperatures. Adv. Funct. Mater., 2023, 33 (27): 2214913. doi: 10.1002/adfm.202214913
|
[3] |
Kim S E, Mujid F, Rai A, et al. Extremely anisotropic van der Waals thermal conductors. Nature, 2021, 597 (7878): 660–665. doi: 10.1038/s41586-021-03867-8
|
[4] |
Sarkar D, Ghosh T, Banik A, et al. Highly converged valence bands and ultralow lattice thermal conductivity for high-performance SnTe thermoelectrics. Angew. Chem. Int. Ed., 2020, 59 (27): 11115–11122. doi: 10.1002/anie.202003946
|
[5] |
Zhou M, Li J F, Kita T. Nanostructured AgPb mSbTe m+2 system bulk materials with enhanced thermoelectric performance. J. Am. Chem. Soc., 2008, 130 (13): 4527–4532. doi: 10.1021/ja7110652
|
[6] |
Qian X, Zhou J W, Chen G. Phonon-engineered extreme thermal conductivity materials. Nat. Mater., 2021, 20 (9): 1188–1202. doi: 10.1038/s41563-021-00918-3
|
[7] |
Jana M K, Biswas K. Crystalline solids with intrinsically low lattice thermal conductivity for thermoelectric energy conversion. ACS Energy Lett., 2018, 3 (6): 1315–1324. doi: 10.1021/acsenergylett.8b00435
|
[8] |
Zhu H, Zhao C C, Nan P F, et al. Intrinsically low lattice thermal conductivity in natural superlattice (Bi2) m(Bi2Te3) n thermoelectric materials. Chem. Mater., 2021, 33 (4): 1140–1148. doi: 10.1021/acs.chemmater.0c03691
|
[9] |
Gibson Q D, Zhao T Q, Daniels L M, et al. Low thermal conductivity in a modular inorganic material with bonding anisotropy and mismatch. Science, 2021, 373 (6558): 1017–1022. doi: 10.1126/science.abh1619
|
[10] |
Ji R W, Lei M, Genevois C, et al. Multiple anion chemistry for ionic layer thickness tailoring in Bi2+2 nO2+2 nSe nX2 (X = Cl, Br) van der Waals semiconductors with low thermal conductivities. Chem. Mater., 2022, 34 (10): 4751–4764. doi: 10.1021/acs.chemmater.2c00786
|
[11] |
Wang C, Xu H Y, Cheng H, et al. Interfacial ion regulation on 2D layered double hydroxide nanosheets for enhanced thermal insulation. Sci. China Chem., 2022, 65 (5): 898–904. doi: 10.1007/s11426-021-1201-0
|
[12] |
Su B, Han Z R, Jiang Y L, et al. Re-doped p-type thermoelectric SnSe polycrystals with enhanced power factor and high ZT > 2. Adv. Funct. Mater., 2023, 33 (37): 2301971. doi: 10.1002/adfm.202301971
|
[13] |
Yuan J J, Jin K P, Shi Z, et al. Enhanced thermoelectric performance of polycrystalline SnSe by doping with the heavy rare earth element Yb. J. Alloy. Compd., 2022, 907: 164438. doi: 10.1016/j.jallcom.2022.164438
|
[14] |
Feng D, Zheng F S, Wu D, et al. Investigation into the extremely low thermal conductivity in Ba heavily doped BiCuSeO. Nano Energy, 2016, 27: 167–174. doi: 10.1016/j.nanoen.2016.07.003
|
[15] |
Ning S, Huberman S C, Ding Z W, et al. Anomalous defect dependence of thermal conductivity in epitaxial WO3 thin films. Adv. Mater., 2019, 31 (43): 1903738. doi: 10.1002/adma.201903738
|
[16] |
Zhang T D, Pan W F, Ning S T, et al. Vacancy manipulation induced optimal carrier concentration, band convergence and low lattice thermal conductivity in nano-crystalline SnTe yielding superior thermoelectric performance. Adv. Funct. Mater., 2023, 33 (10): 2213761. doi: 10.1002/adfm.202213761
|
[17] |
Xie H Y, Su X L, Hao S Q, et al. Large thermal conductivity drops in the diamondoid lattice of CuFeS2 by discordant atom doping. J. Am. Chem. Soc., 2019, 141 (47): 18900–18909. doi: 10.1021/jacs.9b10983
|
[18] |
Tan Q, Zhao L D, Li J F, et al. Thermoelectrics with earth abundant elements: low thermal conductivity and high thermopower in doped SnS. J. Mater. Chem. A, 2014, 2 (41): 17302–17306. doi: 10.1039/C4TA04462B
|
[19] |
Collin M S, Venkatraman S K, Vijayakumar N, et al. Bioaccumulation of lead (Pb) and its effects on human: A review. J. Hazard. Mater. Adv., 2022, 7: 100094. doi: 10.1016/j.hazadv.2022.100094
|
[20] |
Wu H, Lu X, Wang G Y, et al. Sodium-doped tin sulfide single crystal: a nontoxic earth-abundant material with high thermoelectric performance. Adv. Energy Mater., 2018, 8 (20): 1800087. doi: 10.1002/aenm.201800087
|
[21] |
Wang Z Y, Wang D Y, Qiu Y T, et al. Realizing high thermoelectric performance of polycrystalline SnS through optimizing carrier concentration and modifying band structure. J. Alloy. Compd., 2019, 789: 485–492. doi: 10.1016/j.jallcom.2019.03.031
|
[22] |
Zhou B Q, Li S, Li W, et al. Thermoelectric properties of SnS with Na-doping. ACS Appl. Mater. Interfaces, 2017, 9 (39): 34033–34041. doi: 10.1021/acsami.7b08770
|
[23] |
HU X G, HE W K, WANG D Y, et al. Thermoelectric transport properties of n-type tin sulfide. Scripta Mater., 2019, 170: 99–105. doi: 10.1016/j.scriptamat.2019.05.043
|
[24] |
Čermák P, Hejtmánek J, Plecháček T, et al. Thermoelectric properties and stability of Tl-doped SnS. J. Alloy. Compd., 2019, 811: 151902. doi: 10.1016/j.jallcom.2019.151902
|
[25] |
Asfandiyar, Cai B W, Zhao L D, et al. High thermoelectric figure of merit ZT > 1 in SnS polycrystals. J. Materiomics, 2020, 6 (1): 77–85. doi: 10.1016/j.jmat.2019.12.003
|
[26] |
Cahill D G, Watson S K, Pohl R O. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B, 1992, 46 (10): 6131–6140. doi: 10.1103/PhysRevB.46.6131
|
[27] |
Guo R Q, Wang X J, Kuang Y D, et al. First-principles study of anisotropic thermoelectric transport properties of IV-VI semiconductor compounds SnSe and SnS. Phys. Rev. B, 2015, 92 (11): 115202. doi: 10.1103/PhysRevB.92.115202
|
[28] |
Ding G Q, Gao G Y, Yao K L. High-efficient thermoelectric materials: The case of orthorhombic IV-VI compounds. Sci. Rep., 2015, 5: 9567. doi: 10.1038/srep09567
|
[29] |
Yang H Q, Wang X Y, Wu H, et al. Sn vacancy engineering for enhancing the thermoelectric performance of two-dimensional SnS. J Mater. Chem. C, 2019, 7 (11): 3351–3359. doi: 10.1039/C8TC05711G
|
[30] |
Zhao L D, Lo S H, Zhang Y S, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014, 508 (7496): 373–377. doi: 10.1038/nature13184
|
[31] |
Chen Q L, Lu P X, Hao Y L, et al. Morphology, structure and properties of Bi2S3 nanocrystals: role of mixed valence effects of cobalt. J. Mater. Sci.: Mater. Electron., 2021, 32 (19): 24459–24483. doi: 10.1007/s10854-021-06925-z
|
[32] |
He W K, Wang D Y, Wu H J, et al. High thermoelectric performance in low-cost SnS0.91Se0. 09 crystals. Science, 2019, 365 (6460): 1418–1424. doi: 10.1126/science.aax5123
|
[33] |
Xie H Y, Li Z, Liu Y K, et al. Silver atom off-centering in diamondoid solid solutions causes crystallographic distortion and suppresses lattice thermal conductivity. J. Am. Chem. Soc., 2023, 145 (5): 3211–3220. doi: 10.1021/jacs.2c13179
|
[34] |
Chandra S, Bhat U, Dutta P, et al. Modular nanostructures facilitate low thermal conductivity and ultra-high thermoelectric performance in n-type SnSe. Adv. Mater., 2022, 34 (40): 2203725. doi: 10.1002/adma.202203725
|
[35] |
He J G, Xia Y, Naghavi S S, et al. Designing chemical analogs to PbTe with intrinsic high band degeneracy and low lattice thermal conductivity. Nat. Commun., 2019, 10: 719. doi: 10.1038/s41467-019-08542-1
|
[36] |
Xiao Y, Wu H J, Cui J, et al. Realizing high performance n-type PbTe by synergistically optimizing effective mass and carrier mobility and suppressing bipolar thermal conductivity. Energy Environ. Sci., 2018, 11 (9): 2486–2495. doi: 10.1039/C8EE01151F
|
[37] |
Xing T, Zhu C X, Song Q F, et al. Ultralow lattice thermal conductivity and superhigh thermoelectric figure-of-merit in (Mg, Bi) Co-doped GeTe. Adv. Mater., 2021, 33 (17): 2008773. doi: 10.1002/adma.202008773
|
[38] |
Chen H L, Chen J X, Si J C, et al. Ultrathin tin monosulfide nanosheets with the exposed (001) plane for efficient electrocatalytic conversion of CO2 into formate. Chem. Sci., 2020, 11 (15): 3952–3958. doi: 10.1039/C9SC06548B
|
[39] |
Biswas K, He J Q, Blum I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012, 489 (7416): 414–418. doi: 10.1038/nature11439
|
[40] |
Tan G J, Zhao L D, Kanatzidis M G. Rationally designing high-performance bulk thermoelectric materials. Chem. Rev., 2016, 116 (19): 12123–12149. doi: 10.1021/acs.chemrev.6b00255
|
JUSTC-2024-0025 Supporting information.docx |
Figure 1. (a) Illustration of atomic mass of metals with trivalent ions. Darker colors mean heavier atomic mass, and the radii of the circles reflect of their trivalent ions. Top scheme shows phonons’ group velocity declines when meeting with heavier atoms. (b) Illustration of SnS crystal structure and changes after charge balance codoping, in which gray, yellow, purple, and green balls refers to Sn2+, S2−, Bi3+, and Ag+, respectively.
Figure 2. (a) XRD patterns of Sn1-2xAgxBixS (x = 0, 0.01, 0.02, 0.03). (b) SEM‒EDS mapping of Sn0.94Ag0.03Bi0.03S, showing even dispersion. (c, d) SEM images of Sn0.94Ag0.03Bi0.03S pellets from top view and beveled view, respectively. XPS spectra of SnS and Sn0.94Ag0.03Bi0.03S: (e, f) 3d orbitals of Sn element; (g) 2p orbitals of S element and 4f orbitals of Bi; (h) 3d orbitals of Ag element.
Figure 3. Thermal transport properties of Sn1-2xAgxBixS (x = 0, 0.01, 0.02, 0.03). (a) Thermal conductivity parallel to the press. (b) Thermal conductivity vertical to the press. (c) Thermal diffusivity parallel to the press. (d) Comparison of ultralow thermal conductivity of SnS in previous researched and this work.
Figure 4. (a) HAADF-STEM image of Sn0.94Ag0.03Bi0.03S along the (100) direction, where Sn and S atoms are depicted in gray and yellow; the red circles are highlighted Bi atoms. The right panel shows the crystal structure of SnS in the same projection. (b) HRTEM-EDS mapping of Sn0.94Ag0.03Bi0.03S. (c, d) HRTEM images of SnS and Sn0.94Ag0.03Bi0.03S, respectively. Insets are enlarged images of selected areas. (e) FFT image of the selected area in (d), showing distinct two sets of diffraction spots.
[1] |
Liu S, Dun C C, Wei J L, et al. Creation of hollow silica-fiberglass soft ceramics for thermal insulation. Chem. Eng. J., 2023, 454: 140134. doi: 10.1016/j.cej.2022.140134
|
[2] |
Lin X C, Li S L, Li W X, et al. Thermo-responsive self-ceramifiable robust aerogel with exceptional strengthening and thermal insulating performance at ultrahigh temperatures. Adv. Funct. Mater., 2023, 33 (27): 2214913. doi: 10.1002/adfm.202214913
|
[3] |
Kim S E, Mujid F, Rai A, et al. Extremely anisotropic van der Waals thermal conductors. Nature, 2021, 597 (7878): 660–665. doi: 10.1038/s41586-021-03867-8
|
[4] |
Sarkar D, Ghosh T, Banik A, et al. Highly converged valence bands and ultralow lattice thermal conductivity for high-performance SnTe thermoelectrics. Angew. Chem. Int. Ed., 2020, 59 (27): 11115–11122. doi: 10.1002/anie.202003946
|
[5] |
Zhou M, Li J F, Kita T. Nanostructured AgPb mSbTe m+2 system bulk materials with enhanced thermoelectric performance. J. Am. Chem. Soc., 2008, 130 (13): 4527–4532. doi: 10.1021/ja7110652
|
[6] |
Qian X, Zhou J W, Chen G. Phonon-engineered extreme thermal conductivity materials. Nat. Mater., 2021, 20 (9): 1188–1202. doi: 10.1038/s41563-021-00918-3
|
[7] |
Jana M K, Biswas K. Crystalline solids with intrinsically low lattice thermal conductivity for thermoelectric energy conversion. ACS Energy Lett., 2018, 3 (6): 1315–1324. doi: 10.1021/acsenergylett.8b00435
|
[8] |
Zhu H, Zhao C C, Nan P F, et al. Intrinsically low lattice thermal conductivity in natural superlattice (Bi2) m(Bi2Te3) n thermoelectric materials. Chem. Mater., 2021, 33 (4): 1140–1148. doi: 10.1021/acs.chemmater.0c03691
|
[9] |
Gibson Q D, Zhao T Q, Daniels L M, et al. Low thermal conductivity in a modular inorganic material with bonding anisotropy and mismatch. Science, 2021, 373 (6558): 1017–1022. doi: 10.1126/science.abh1619
|
[10] |
Ji R W, Lei M, Genevois C, et al. Multiple anion chemistry for ionic layer thickness tailoring in Bi2+2 nO2+2 nSe nX2 (X = Cl, Br) van der Waals semiconductors with low thermal conductivities. Chem. Mater., 2022, 34 (10): 4751–4764. doi: 10.1021/acs.chemmater.2c00786
|
[11] |
Wang C, Xu H Y, Cheng H, et al. Interfacial ion regulation on 2D layered double hydroxide nanosheets for enhanced thermal insulation. Sci. China Chem., 2022, 65 (5): 898–904. doi: 10.1007/s11426-021-1201-0
|
[12] |
Su B, Han Z R, Jiang Y L, et al. Re-doped p-type thermoelectric SnSe polycrystals with enhanced power factor and high ZT > 2. Adv. Funct. Mater., 2023, 33 (37): 2301971. doi: 10.1002/adfm.202301971
|
[13] |
Yuan J J, Jin K P, Shi Z, et al. Enhanced thermoelectric performance of polycrystalline SnSe by doping with the heavy rare earth element Yb. J. Alloy. Compd., 2022, 907: 164438. doi: 10.1016/j.jallcom.2022.164438
|
[14] |
Feng D, Zheng F S, Wu D, et al. Investigation into the extremely low thermal conductivity in Ba heavily doped BiCuSeO. Nano Energy, 2016, 27: 167–174. doi: 10.1016/j.nanoen.2016.07.003
|
[15] |
Ning S, Huberman S C, Ding Z W, et al. Anomalous defect dependence of thermal conductivity in epitaxial WO3 thin films. Adv. Mater., 2019, 31 (43): 1903738. doi: 10.1002/adma.201903738
|
[16] |
Zhang T D, Pan W F, Ning S T, et al. Vacancy manipulation induced optimal carrier concentration, band convergence and low lattice thermal conductivity in nano-crystalline SnTe yielding superior thermoelectric performance. Adv. Funct. Mater., 2023, 33 (10): 2213761. doi: 10.1002/adfm.202213761
|
[17] |
Xie H Y, Su X L, Hao S Q, et al. Large thermal conductivity drops in the diamondoid lattice of CuFeS2 by discordant atom doping. J. Am. Chem. Soc., 2019, 141 (47): 18900–18909. doi: 10.1021/jacs.9b10983
|
[18] |
Tan Q, Zhao L D, Li J F, et al. Thermoelectrics with earth abundant elements: low thermal conductivity and high thermopower in doped SnS. J. Mater. Chem. A, 2014, 2 (41): 17302–17306. doi: 10.1039/C4TA04462B
|
[19] |
Collin M S, Venkatraman S K, Vijayakumar N, et al. Bioaccumulation of lead (Pb) and its effects on human: A review. J. Hazard. Mater. Adv., 2022, 7: 100094. doi: 10.1016/j.hazadv.2022.100094
|
[20] |
Wu H, Lu X, Wang G Y, et al. Sodium-doped tin sulfide single crystal: a nontoxic earth-abundant material with high thermoelectric performance. Adv. Energy Mater., 2018, 8 (20): 1800087. doi: 10.1002/aenm.201800087
|
[21] |
Wang Z Y, Wang D Y, Qiu Y T, et al. Realizing high thermoelectric performance of polycrystalline SnS through optimizing carrier concentration and modifying band structure. J. Alloy. Compd., 2019, 789: 485–492. doi: 10.1016/j.jallcom.2019.03.031
|
[22] |
Zhou B Q, Li S, Li W, et al. Thermoelectric properties of SnS with Na-doping. ACS Appl. Mater. Interfaces, 2017, 9 (39): 34033–34041. doi: 10.1021/acsami.7b08770
|
[23] |
HU X G, HE W K, WANG D Y, et al. Thermoelectric transport properties of n-type tin sulfide. Scripta Mater., 2019, 170: 99–105. doi: 10.1016/j.scriptamat.2019.05.043
|
[24] |
Čermák P, Hejtmánek J, Plecháček T, et al. Thermoelectric properties and stability of Tl-doped SnS. J. Alloy. Compd., 2019, 811: 151902. doi: 10.1016/j.jallcom.2019.151902
|
[25] |
Asfandiyar, Cai B W, Zhao L D, et al. High thermoelectric figure of merit ZT > 1 in SnS polycrystals. J. Materiomics, 2020, 6 (1): 77–85. doi: 10.1016/j.jmat.2019.12.003
|
[26] |
Cahill D G, Watson S K, Pohl R O. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B, 1992, 46 (10): 6131–6140. doi: 10.1103/PhysRevB.46.6131
|
[27] |
Guo R Q, Wang X J, Kuang Y D, et al. First-principles study of anisotropic thermoelectric transport properties of IV-VI semiconductor compounds SnSe and SnS. Phys. Rev. B, 2015, 92 (11): 115202. doi: 10.1103/PhysRevB.92.115202
|
[28] |
Ding G Q, Gao G Y, Yao K L. High-efficient thermoelectric materials: The case of orthorhombic IV-VI compounds. Sci. Rep., 2015, 5: 9567. doi: 10.1038/srep09567
|
[29] |
Yang H Q, Wang X Y, Wu H, et al. Sn vacancy engineering for enhancing the thermoelectric performance of two-dimensional SnS. J Mater. Chem. C, 2019, 7 (11): 3351–3359. doi: 10.1039/C8TC05711G
|
[30] |
Zhao L D, Lo S H, Zhang Y S, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014, 508 (7496): 373–377. doi: 10.1038/nature13184
|
[31] |
Chen Q L, Lu P X, Hao Y L, et al. Morphology, structure and properties of Bi2S3 nanocrystals: role of mixed valence effects of cobalt. J. Mater. Sci.: Mater. Electron., 2021, 32 (19): 24459–24483. doi: 10.1007/s10854-021-06925-z
|
[32] |
He W K, Wang D Y, Wu H J, et al. High thermoelectric performance in low-cost SnS0.91Se0. 09 crystals. Science, 2019, 365 (6460): 1418–1424. doi: 10.1126/science.aax5123
|
[33] |
Xie H Y, Li Z, Liu Y K, et al. Silver atom off-centering in diamondoid solid solutions causes crystallographic distortion and suppresses lattice thermal conductivity. J. Am. Chem. Soc., 2023, 145 (5): 3211–3220. doi: 10.1021/jacs.2c13179
|
[34] |
Chandra S, Bhat U, Dutta P, et al. Modular nanostructures facilitate low thermal conductivity and ultra-high thermoelectric performance in n-type SnSe. Adv. Mater., 2022, 34 (40): 2203725. doi: 10.1002/adma.202203725
|
[35] |
He J G, Xia Y, Naghavi S S, et al. Designing chemical analogs to PbTe with intrinsic high band degeneracy and low lattice thermal conductivity. Nat. Commun., 2019, 10: 719. doi: 10.1038/s41467-019-08542-1
|
[36] |
Xiao Y, Wu H J, Cui J, et al. Realizing high performance n-type PbTe by synergistically optimizing effective mass and carrier mobility and suppressing bipolar thermal conductivity. Energy Environ. Sci., 2018, 11 (9): 2486–2495. doi: 10.1039/C8EE01151F
|
[37] |
Xing T, Zhu C X, Song Q F, et al. Ultralow lattice thermal conductivity and superhigh thermoelectric figure-of-merit in (Mg, Bi) Co-doped GeTe. Adv. Mater., 2021, 33 (17): 2008773. doi: 10.1002/adma.202008773
|
[38] |
Chen H L, Chen J X, Si J C, et al. Ultrathin tin monosulfide nanosheets with the exposed (001) plane for efficient electrocatalytic conversion of CO2 into formate. Chem. Sci., 2020, 11 (15): 3952–3958. doi: 10.1039/C9SC06548B
|
[39] |
Biswas K, He J Q, Blum I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012, 489 (7416): 414–418. doi: 10.1038/nature11439
|
[40] |
Tan G J, Zhao L D, Kanatzidis M G. Rationally designing high-performance bulk thermoelectric materials. Chem. Rev., 2016, 116 (19): 12123–12149. doi: 10.1021/acs.chemrev.6b00255
|