[1] |
Moulahi A, Sediri F. Pencil-like zinc oxide micro/nano-scale structures: Hydrothermal synthesis, optical and photocatalytic properties. Materials Research Bulletin, 2013, 48: 3723–3728. doi: 10.1016/j.materresbull.2013.05.116
|
[2] |
Faisal M, Ibrahim A A, Harraz F A, et al. SnO2 doped ZnO nanostructures for highly efficient photocatalyst. Journal of Molecular Catalysis A: Chemical, 2015, 397: 19–25. doi: 10.1016/j.molcata.2014.10.027
|
[3] |
Amna S, Shahrom M, Azman S, et al. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Letters, 2015, 7: 219–242. doi: 10.1007/s40820-015-0040-x
|
[4] |
Zhu L, Zeng W. Room-temperature gas sensing of ZnO-based gas sensor: A review. Sensors and Actuators A: Physical, 2017, 267 (1): 242–261. doi: 10.1016/j.sna.2017.10.021
|
[5] |
Paul R, Arulkumar S, Jenifer K, et al. Al-Diffused ZnO Transparent Conducting Oxide Thin Films for Cadmium Telluride Superstrate Solar Cells: A Comprehensive Study. Journal of Electronic Materials, 2023, 52: 130–139. doi: 10.1007/s11664-022-10001-5
|
[6] |
Mustaqima M, Liu C. ZnO-based nanostructures for diluted magnetic semiconductor. Turkish Journal of Physics, 2014, 38 (3): 429–441. doi: 10.3906/fiz-1405-17
|
[7] |
Chen X X, Yin Z Z, Yan J L, et al. Fabrication of ZnO@Fe2O3 superhydrophobic coatings with high thermal conductivity. Surface and Coatings Technology, 2023, 467: 129701. doi: 10.1016/j.surfcoat.2023.129701
|
[8] |
Yin Z Z, Yuan F, Zhou D P, et al. Ultra dynamic water repellency and anti-icing performance of superhydrophobic ZnO surface on the printed circuit board (PCB). Chemical Physics Letters, 2021, 771: 138558. doi: 10.1016/j.cplett.2021.138558
|
[9] |
Yin Z Z, Xue M S, Luo Y D, et al. Excellent static and dynamic anti-icing properties of hierarchical structured ZnO superhydrophobic surface on Cu substrates. Chemical Physics Letters, 2020, 755: 137806. doi: 10.1016/j.cplett.2020.137806
|
[10] |
Zhou T H, Yin Z Z, Chen X X, et al. Mussel-inspired fabrication of superior superhydrophobic cellulose-based composite membrane for efficient oil emulsions separation, excellent anti-microbial property and simultaneous photocatalytic dye degradation. Separation and Purification Technology, 2022, 286: 120504. doi: 10.1016/j.seppur.2022.120504
|
[11] |
Li M, Yin Z Z, Li Z H, et al. A harsh environment resistant robust Co(OH)2@stearic acid nanocellulose-based membrane for oil-water separation and wastewater purification. Journal of Environmental Management, 2023, 342: 118127. doi: 10.1016/j.jenvman.2023.118127
|
[12] |
Chang G S, Kurmaev E Z, Boukhvalov D W, et al. Co and Al co-doping for ferromagnetism in ZnO: Co diluted magnetic semiconductors. Journal of Physics: Condensed Matter, 2009, 21 (5): 056002. doi: 10.1088/0953-8984/21/5/056002
|
[13] |
Ko H J, Chen Y F, Zhu Z, et al. Photoluminescence properties of ZnO epilayers grown on CaF2(111) by plasma assisted molecular beam epitaxy. Applied Physics Letters, 2000, 76: 1905–1907. doi: 10.1063/1.126207
|
[14] |
Belghazi Y, Ait Aouaj M, Yadari M E, et al. Elaboration and characterization of Co-doped ZnO thin films deposited by spray pyrolysis technique. Microelectronics Journal, 2009, 40 (2): 265–267. doi: 10.1016/j.mejo.2008.07.051
|
[15] |
Belghazi Y, Schmerber G, Colis S, et al. Room-temperature ferromagnetism in Co-doped ZnO thin films prepared by sol-gel method. Journal of Magnetism and Magnetic Materials, 2007, 310 (2): 2092–2094. doi: 10.1016/j.jmmm.2006.10.1138
|
[16] |
Petersen J, Brimont C, Gallart M, et al. Correlation of structural properties with energy transfer of Eu-doped ZnO thin films prepared by sol-gel process and magnetron reactive sputtering. Journal of Applied Physics, 2010, 107: 123522. doi: 10.1063/1.3436628
|
[17] |
Deng Y T, Xu F L, Yin Z Z, et al. Controllable fabrication of superhydrophobic alloys surface on 304 stainless steel substrate for anti-icing performance. Ceramics International, 2023, 49 (15): 25135–25143. doi: 10.1016/j.ceramint.2023.05.044
|
[18] |
Yuan F, Yin Z Z, Xue M S, et al. A multifunctional and environmentally safe superhydrophobic membrane with superior oil/water separation, photocatalytic degradation and anti-biofouling performance. Journal of Colloid and Interface Science, 2022, 611: 93–104. doi: 10.1016/j.jcis.2021.12.070
|
[19] |
Chen X X, Yin Z Z, Chen Z B, et al. Superhydrophobic Photocatalytic Self-Cleaning Nanocellulose-Based Strain Sensor for Full-Range Human Motion Monitoring. Advanced Materials Interfaces, 2023, 10 (33): 2300350. doi: 10.1002/admi.202300350
|
[20] |
Janotti A, Van de Walle C G. Native point defects in ZnO. Physical Review B, 2007, 76 (16): 165202. doi: 10.1103/PhysRevB.76.165202
|
[21] |
Yang Y H, Chen X Y, Feng Y, et al. Physical Mechanism of Blue-Shift of UV Luminescence of a Single Pencil-Like ZnO Nanowire. Nano Letters, 2007, 7 (12): 3879–3883. doi: 10.1021/nl071849h
|
[22] |
Mahmood K, Song D, Park S B. Effects of thermal treatment on the characteristics of boron and tantalum-doped ZnO thin films deposited by the electrospraying method at atmospheric pressure. Surface and Coatings Technology, 2012, 206 (23): 4730–4740. doi: 10.1016/j.surfcoat.2012.01.047
|
[23] |
Wu Y H, Li C P, Li M J, et al. Microstructural and optical properties of Ta-doped ZnO films prepared by radio frequency magnetron sputtering. Ceramics International, 2016, 42 (9): 10847–10853. doi: 10.1016/j.ceramint.2016.03.214
|
[24] |
Cheng Y L, Cao L, He G, et al. Preparation, microstructure and photoelectrical properties of Tantalum-doped zinc oxide transparent conducting films. Journal of Alloys and Compounds, 2014, 608 (25): 85–89. doi: 10.1016/j.jallcom.2014.03.031
|
[25] |
Liu X, Pan K, Li W B, et al. Optical and gas sensing properties of Al-doped ZnO transparent conducting films prepared by sol-gel method under different heat treatments. Ceramics International, 2014, 40 (7): 9931–9939. doi: 10.1016/j.ceramint.2014.02.090
|
[26] |
Xu G Q, Shen X K, Hu Y, et al. Fabrication of tantalum oxide layers onto titanium substrates for improved corrosion resistance and cytocompatibility. Surface and Coatings Technology, 2015, 272 (25): 58–65. doi: 10.1016/j.surfcoat.2015.04.024
|
[27] |
Su Y G, Lang J Y, Li L P, et al. Unexpected Catalytic Performance in Silent Tantalum Oxide through Nitridation and Defect Chemistry. Journal of the American Chemical Society, 2013, 135 (31): 11433–11436. doi: 10.1021/ja404239z
|
[28] |
Wang L W, Wu F, Tian D X, et al. Effects of Na content on structural and optical properties of Na-doped ZnO thin films prepared by sol-gel method. Journal of Alloys and Compounds, 2015, 623 (25): 367–373. doi: 10.1016/j.jallcom.2014.11.055
|
[29] |
Lee J H, Song J T. Dependence of the electrical and optical properties on the bias voltage for ZnO: Al films deposited by r. f. magnetron sputtering. Thin Solid Films, 2008, 516 (7): 1377–1381. doi: 10.1016/j.tsf.2007.03.078
|
[30] |
Poongodi G, Kumar R M, Jayavel R. Structural, optical and visible light photocatalytic properties of nanocrystalline Nd doped ZnO thin films prepared by spin coating method. Ceramics International, 2015, 41 (3): 4169–4175. doi: 10.1016/j.ceramint.2014.12.098
|
[31] |
Lv M S, Xiu X W, Pang Z Y, et al. Structural, electrical and optical properties of zirconium-doped zinc oxide films prepared by radio frequency magnetron sputtering. Thin Solid Films, 2008, 516 (8): 2017–2021. doi: 10.1016/j.tsf.2007.06.173
|
[32] |
Soumahoro I, Colis S, Schmerber G, et al. Structural, optical, spectroscopic and electrical properties of Mo-doped ZnO thin films grown by radio frequency magnetron sputtering. Thin Solid Films, 2014, 566 (1): 61–69. doi: 10.1016/j.tsf.2014.07.017
|
[33] |
Toma M, Domokos R, Lung C, et al. Characterization of ZnO, Ga-Doped ZnO, and Nd-Ga-Doped ZnO Thin Films Synthesized by Radiofrequency Magnetron Sputtering. Analytical Letters, 2023. doi: 10.1080/00032719.2023.2225199
|
[34] |
Ravichandran K, Subha K, Dineshbabu K, et al. Enhancing the electrical parameters of ZnO films deposited using a low-cost chemical spray technique through Ta doping. Journal of Alloys and Compounds, 2016, 656 (25): 332–338. doi: 10.1016/j.jallcom.2015.09.115
|
[35] |
Nistor M, Mihut L, Millon E, et al. Tailored electric and optical properties of Nd doped ZnO: from transparent conducting oxide to photon down-shifting thin films. RSC Advances, 2016, 6: 41465–41472. doi: 10.1039/C6RA07669F
|
[36] |
Janotti A, Van de Walle C G. Fundamentals of zinc oxide as a semiconductor. Reports on Progress in Physics, 2009, 72: 126501. doi: 10.1088/0034-4885/72/12/126501
|
[37] |
Wang Y G, Lau S P, Lee H W, et al. Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air. Journal of Applied Physics, 2003, 94: 354–358. doi: 10.1063/1.1577819
|
[38] |
Lv J G, Liu C L, Gong W B, et al. Temperature-dependent shifts of near band-edge emission and their second-order diffraction for ZnO nanorods. Optical Materials, 2012, 34 (11): 1917–1920. doi: 10.1016/j.optmat.2012.05.030
|
[39] |
Wang M S, Zhou Y J, Zhang Y P, et al. Near-infrared photoluminescence from ZnO. Applied Physics Letters, 2012, 100: 101906. doi: 10.1063/1.3692584
|
[40] |
Kayaci F, Vempati S, Donmez I, et al. Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: a bottom-up approach to control defect density. Nanoscale, 2014, 6: 10224–10234. doi: 10.1039/C4NR01887G
|
[41] |
Biroju R K, Giri P K. Strong visible and near infrared photoluminescence from ZnO nanorods/nanowires grown on single layer graphene studied using sub-band gap excitation. Journal of Applied Physics, 2017, 122: 044302. doi: 10.1063/1.4995957
|
[42] |
Wu X L, Siu G G, Fu C L, et al. Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films. Applied Physics Letters, 2001, 78: 2285–2287. doi: 10.1063/1.1361288
|
[43] |
Kumar V, Swart H C, Ntwaeaborwa O M, et al. Origin of the red emission in zinc oxide nanophosphors. Materials Letters, 2013, 101: 57–60. doi: 10.1016/j.matlet.2013.03.073
|
[44] |
Perkins J, Foster G M, Myer M, et al. Impact of Mg content on native point defects in MgxZn1-xO (0≤x≤0.56). APL Materials, 2015, 3: 062801. doi: 10.1063/1.4915491
|
[45] |
Singha C, Panda E. Variation of electrical properties in thickening Al-doped ZnO films: role of defect chemistry. RSC Advances, 2016, 6: 48910–48918. doi: 10.1039/C6RA06513A
|
[46] |
Zhang H, Li W, Qin G P, et al. Role of zinc interstitial defects in indium and magnesium codoped ZnO transparent conducting films. Applied Surface Science, 2019, 492: 392–398. doi: 10.1016/j.apsusc.2019.06.245
|
[47] |
Dhawan R, Panda E. Mg addition in undoped and Al-doped ZnO films: Fabricating near UV transparent conductor by bandgap engineering. Journal of Alloys and Compounds, 2019, 788: 1037–1047. doi: 10.1016/j.jallcom.2019.02.289
|
[48] |
Ngom B D, Mpahane T, Manyala N, et al. Structural and optical properties of nano-structured tungsten-doped ZnO thin films grown by pulsed laser deposition. Applied Surface Science, 2009, 255 (7): 4153–4158. doi: 10.1016/j.apsusc.2008.10.122
|
[49] |
Burstein E. Anomalous Optical Absorption Limit in InSb. Physical Review, 1954, 93 (3): 632–633. doi: 10.1103/PhysRev.93.632
|
[50] |
Moss T S. The Interpretation of the Properties of Indium Antimonide. Proceedings of the Physical Society, 1954, 67: 775. doi: 10.1088/0370-1301/67/10/306
|
[51] |
Lu J G, Fujita S, Kawaharamura T, et al. Carrier concentration dependence of band gap shift in n-type ZnO: Al films. Journal of Applied Physics, 2007, 101: 083705. doi: 10.1063/1.2721374
|
[52] |
Kronenberger A, Polity A, Hofmann D M, et al. Structural, electrical, and optical properties of hydrogen-doped ZnO films. Physical Review B, 2012, 86 (11): 115334. doi: 10.1103/PhysRevB.86.115334
|
[53] |
Liu C, Yuan Y F, Zhang X T, et al. Ta Doping Effect on Structural and Optical Properties of InTe Thin Films. Nanomaterials, 2020, 10 (9): 1887. doi: 10.3390/nano10091887
|
[54] |
Saha D, Misra P, Joshi M P, et al. Investigating Optical Properties of Atomic Layer Deposited ZnO/TiOx Multi-stacked Thin Films Above Mott Critical Density. The Journal of Physical Chemistry C, 2017, 121 (33): 18129–18136. doi: 10.1021/acs.jpcc.7b05056
|
[55] |
Makino T, Segawa Y, Yoshida S, et al. Gallium concentration dependence of room-temperature near-band-edge luminescence in n-type ZnO: Ga. Applied Physics Letters, 2004, 85: 759–761. doi: 10.1063/1.1776630
|
[56] |
Luo J T, Zhu X Y, Chen G, et al. The electrical, optical and magnetic properties of Si-doped ZnO films. Applied Surface Science, 2012, 258 (6): 2177–2181. doi: 10.1016/j.apsusc.2011.02.093
|
[57] |
Mohanty B C, Yeon D H, Das S N, et al. Unusual near-band-edge photoluminescence at room temperature in heavily-doped ZnO: Al thin films prepared by pulsed laser deposition. Materials Chemistry and Physics, 2013, 140 (2-3): 610–615. doi: 10.1016/j.matchemphys.2013.04.014
|
[58] |
Wu F, Fang L, Pan Y J, et al. Effect of annealing treatment on structural, electrical, and optical properties of Ga-doped ZnO thin films deposited by RF magnetron sputtering. Thin Solid Films, 2011, 520 (2): 703–707. doi: 10.1016/j.tsf.2011.04.147
|
[59] |
Zheng Z, Lu Y F, Ye Z Z, et al. Carrier type- and concentration-dependent absorption and photoluminescence of ZnO films doped with different Na contents. Materials Science in Semiconductor Processing, 2013, 16 (3): 647–651. doi: 10.1016/j.mssp.2012.12.003
|
[60] |
Guan L, Liu B T, Li Q, et al. Electronic structure and optical properties of substitutional and interstitial phosphor-doped ZnO. Physics Letters A, 2011, 375 (5): 939–945. doi: 10.1016/j.physleta.2010.12.064
|
[61] |
Nashed R, Hassan W M I, Ismailc Y, et al. Unravelling the interplay of crystal structure and electronic band structure of tantalum oxide (Ta2O5). Physical Chemistry Chemical Physics, 2013, 15: 1352–1357. doi: 10.1039/C2CP43492J
|
[62] |
Jacobi K, Zwicker G, Gutmann A. Work function, electron affinity and band bending of zinc oxide surfaces. Surface Science, 1984, 141 (1): 109–125. doi: 10.1016/0039-6028(84)90199-7
|
[63] |
Song T S, Cho J W, Kim J H, et al. High ultraviolet transparent conducting electrodes formed using tantalum oxide/Ag multilayer. Ceramics International, 2022, 48 (3): 3536–3543. doi: 10.1016/j.ceramint.2021.10.132
|
[64] |
Takahashi R, Dazai T, TsukaharaY, et al. Mg substitution effect on the electron affinity of ZnO films. Journal of Applied Physics, 2022, 131: 175302. doi: 10.1063/5.0087044
|
[65] |
Tan S T, Chen B J, Sun X W, et al. Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition. Journal of Applied Physics, 2005, 98: 013505. doi: 10.1063/1.1940137
|
[66] |
Lu J G, Ye Z Z, Zhang Y Z, et al. Self-assembled ZnO quantum dots with tunable optical properties. Applied Physics Letters, 2006, 89: 023122. doi: 10.1063/1.2221892
|
[1] |
Moulahi A, Sediri F. Pencil-like zinc oxide micro/nano-scale structures: Hydrothermal synthesis, optical and photocatalytic properties. Materials Research Bulletin, 2013, 48: 3723–3728. doi: 10.1016/j.materresbull.2013.05.116
|
[2] |
Faisal M, Ibrahim A A, Harraz F A, et al. SnO2 doped ZnO nanostructures for highly efficient photocatalyst. Journal of Molecular Catalysis A: Chemical, 2015, 397: 19–25. doi: 10.1016/j.molcata.2014.10.027
|
[3] |
Amna S, Shahrom M, Azman S, et al. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Letters, 2015, 7: 219–242. doi: 10.1007/s40820-015-0040-x
|
[4] |
Zhu L, Zeng W. Room-temperature gas sensing of ZnO-based gas sensor: A review. Sensors and Actuators A: Physical, 2017, 267 (1): 242–261. doi: 10.1016/j.sna.2017.10.021
|
[5] |
Paul R, Arulkumar S, Jenifer K, et al. Al-Diffused ZnO Transparent Conducting Oxide Thin Films for Cadmium Telluride Superstrate Solar Cells: A Comprehensive Study. Journal of Electronic Materials, 2023, 52: 130–139. doi: 10.1007/s11664-022-10001-5
|
[6] |
Mustaqima M, Liu C. ZnO-based nanostructures for diluted magnetic semiconductor. Turkish Journal of Physics, 2014, 38 (3): 429–441. doi: 10.3906/fiz-1405-17
|
[7] |
Chen X X, Yin Z Z, Yan J L, et al. Fabrication of ZnO@Fe2O3 superhydrophobic coatings with high thermal conductivity. Surface and Coatings Technology, 2023, 467: 129701. doi: 10.1016/j.surfcoat.2023.129701
|
[8] |
Yin Z Z, Yuan F, Zhou D P, et al. Ultra dynamic water repellency and anti-icing performance of superhydrophobic ZnO surface on the printed circuit board (PCB). Chemical Physics Letters, 2021, 771: 138558. doi: 10.1016/j.cplett.2021.138558
|
[9] |
Yin Z Z, Xue M S, Luo Y D, et al. Excellent static and dynamic anti-icing properties of hierarchical structured ZnO superhydrophobic surface on Cu substrates. Chemical Physics Letters, 2020, 755: 137806. doi: 10.1016/j.cplett.2020.137806
|
[10] |
Zhou T H, Yin Z Z, Chen X X, et al. Mussel-inspired fabrication of superior superhydrophobic cellulose-based composite membrane for efficient oil emulsions separation, excellent anti-microbial property and simultaneous photocatalytic dye degradation. Separation and Purification Technology, 2022, 286: 120504. doi: 10.1016/j.seppur.2022.120504
|
[11] |
Li M, Yin Z Z, Li Z H, et al. A harsh environment resistant robust Co(OH)2@stearic acid nanocellulose-based membrane for oil-water separation and wastewater purification. Journal of Environmental Management, 2023, 342: 118127. doi: 10.1016/j.jenvman.2023.118127
|
[12] |
Chang G S, Kurmaev E Z, Boukhvalov D W, et al. Co and Al co-doping for ferromagnetism in ZnO: Co diluted magnetic semiconductors. Journal of Physics: Condensed Matter, 2009, 21 (5): 056002. doi: 10.1088/0953-8984/21/5/056002
|
[13] |
Ko H J, Chen Y F, Zhu Z, et al. Photoluminescence properties of ZnO epilayers grown on CaF2(111) by plasma assisted molecular beam epitaxy. Applied Physics Letters, 2000, 76: 1905–1907. doi: 10.1063/1.126207
|
[14] |
Belghazi Y, Ait Aouaj M, Yadari M E, et al. Elaboration and characterization of Co-doped ZnO thin films deposited by spray pyrolysis technique. Microelectronics Journal, 2009, 40 (2): 265–267. doi: 10.1016/j.mejo.2008.07.051
|
[15] |
Belghazi Y, Schmerber G, Colis S, et al. Room-temperature ferromagnetism in Co-doped ZnO thin films prepared by sol-gel method. Journal of Magnetism and Magnetic Materials, 2007, 310 (2): 2092–2094. doi: 10.1016/j.jmmm.2006.10.1138
|
[16] |
Petersen J, Brimont C, Gallart M, et al. Correlation of structural properties with energy transfer of Eu-doped ZnO thin films prepared by sol-gel process and magnetron reactive sputtering. Journal of Applied Physics, 2010, 107: 123522. doi: 10.1063/1.3436628
|
[17] |
Deng Y T, Xu F L, Yin Z Z, et al. Controllable fabrication of superhydrophobic alloys surface on 304 stainless steel substrate for anti-icing performance. Ceramics International, 2023, 49 (15): 25135–25143. doi: 10.1016/j.ceramint.2023.05.044
|
[18] |
Yuan F, Yin Z Z, Xue M S, et al. A multifunctional and environmentally safe superhydrophobic membrane with superior oil/water separation, photocatalytic degradation and anti-biofouling performance. Journal of Colloid and Interface Science, 2022, 611: 93–104. doi: 10.1016/j.jcis.2021.12.070
|
[19] |
Chen X X, Yin Z Z, Chen Z B, et al. Superhydrophobic Photocatalytic Self-Cleaning Nanocellulose-Based Strain Sensor for Full-Range Human Motion Monitoring. Advanced Materials Interfaces, 2023, 10 (33): 2300350. doi: 10.1002/admi.202300350
|
[20] |
Janotti A, Van de Walle C G. Native point defects in ZnO. Physical Review B, 2007, 76 (16): 165202. doi: 10.1103/PhysRevB.76.165202
|
[21] |
Yang Y H, Chen X Y, Feng Y, et al. Physical Mechanism of Blue-Shift of UV Luminescence of a Single Pencil-Like ZnO Nanowire. Nano Letters, 2007, 7 (12): 3879–3883. doi: 10.1021/nl071849h
|
[22] |
Mahmood K, Song D, Park S B. Effects of thermal treatment on the characteristics of boron and tantalum-doped ZnO thin films deposited by the electrospraying method at atmospheric pressure. Surface and Coatings Technology, 2012, 206 (23): 4730–4740. doi: 10.1016/j.surfcoat.2012.01.047
|
[23] |
Wu Y H, Li C P, Li M J, et al. Microstructural and optical properties of Ta-doped ZnO films prepared by radio frequency magnetron sputtering. Ceramics International, 2016, 42 (9): 10847–10853. doi: 10.1016/j.ceramint.2016.03.214
|
[24] |
Cheng Y L, Cao L, He G, et al. Preparation, microstructure and photoelectrical properties of Tantalum-doped zinc oxide transparent conducting films. Journal of Alloys and Compounds, 2014, 608 (25): 85–89. doi: 10.1016/j.jallcom.2014.03.031
|
[25] |
Liu X, Pan K, Li W B, et al. Optical and gas sensing properties of Al-doped ZnO transparent conducting films prepared by sol-gel method under different heat treatments. Ceramics International, 2014, 40 (7): 9931–9939. doi: 10.1016/j.ceramint.2014.02.090
|
[26] |
Xu G Q, Shen X K, Hu Y, et al. Fabrication of tantalum oxide layers onto titanium substrates for improved corrosion resistance and cytocompatibility. Surface and Coatings Technology, 2015, 272 (25): 58–65. doi: 10.1016/j.surfcoat.2015.04.024
|
[27] |
Su Y G, Lang J Y, Li L P, et al. Unexpected Catalytic Performance in Silent Tantalum Oxide through Nitridation and Defect Chemistry. Journal of the American Chemical Society, 2013, 135 (31): 11433–11436. doi: 10.1021/ja404239z
|
[28] |
Wang L W, Wu F, Tian D X, et al. Effects of Na content on structural and optical properties of Na-doped ZnO thin films prepared by sol-gel method. Journal of Alloys and Compounds, 2015, 623 (25): 367–373. doi: 10.1016/j.jallcom.2014.11.055
|
[29] |
Lee J H, Song J T. Dependence of the electrical and optical properties on the bias voltage for ZnO: Al films deposited by r. f. magnetron sputtering. Thin Solid Films, 2008, 516 (7): 1377–1381. doi: 10.1016/j.tsf.2007.03.078
|
[30] |
Poongodi G, Kumar R M, Jayavel R. Structural, optical and visible light photocatalytic properties of nanocrystalline Nd doped ZnO thin films prepared by spin coating method. Ceramics International, 2015, 41 (3): 4169–4175. doi: 10.1016/j.ceramint.2014.12.098
|
[31] |
Lv M S, Xiu X W, Pang Z Y, et al. Structural, electrical and optical properties of zirconium-doped zinc oxide films prepared by radio frequency magnetron sputtering. Thin Solid Films, 2008, 516 (8): 2017–2021. doi: 10.1016/j.tsf.2007.06.173
|
[32] |
Soumahoro I, Colis S, Schmerber G, et al. Structural, optical, spectroscopic and electrical properties of Mo-doped ZnO thin films grown by radio frequency magnetron sputtering. Thin Solid Films, 2014, 566 (1): 61–69. doi: 10.1016/j.tsf.2014.07.017
|
[33] |
Toma M, Domokos R, Lung C, et al. Characterization of ZnO, Ga-Doped ZnO, and Nd-Ga-Doped ZnO Thin Films Synthesized by Radiofrequency Magnetron Sputtering. Analytical Letters, 2023. doi: 10.1080/00032719.2023.2225199
|
[34] |
Ravichandran K, Subha K, Dineshbabu K, et al. Enhancing the electrical parameters of ZnO films deposited using a low-cost chemical spray technique through Ta doping. Journal of Alloys and Compounds, 2016, 656 (25): 332–338. doi: 10.1016/j.jallcom.2015.09.115
|
[35] |
Nistor M, Mihut L, Millon E, et al. Tailored electric and optical properties of Nd doped ZnO: from transparent conducting oxide to photon down-shifting thin films. RSC Advances, 2016, 6: 41465–41472. doi: 10.1039/C6RA07669F
|
[36] |
Janotti A, Van de Walle C G. Fundamentals of zinc oxide as a semiconductor. Reports on Progress in Physics, 2009, 72: 126501. doi: 10.1088/0034-4885/72/12/126501
|
[37] |
Wang Y G, Lau S P, Lee H W, et al. Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air. Journal of Applied Physics, 2003, 94: 354–358. doi: 10.1063/1.1577819
|
[38] |
Lv J G, Liu C L, Gong W B, et al. Temperature-dependent shifts of near band-edge emission and their second-order diffraction for ZnO nanorods. Optical Materials, 2012, 34 (11): 1917–1920. doi: 10.1016/j.optmat.2012.05.030
|
[39] |
Wang M S, Zhou Y J, Zhang Y P, et al. Near-infrared photoluminescence from ZnO. Applied Physics Letters, 2012, 100: 101906. doi: 10.1063/1.3692584
|
[40] |
Kayaci F, Vempati S, Donmez I, et al. Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: a bottom-up approach to control defect density. Nanoscale, 2014, 6: 10224–10234. doi: 10.1039/C4NR01887G
|
[41] |
Biroju R K, Giri P K. Strong visible and near infrared photoluminescence from ZnO nanorods/nanowires grown on single layer graphene studied using sub-band gap excitation. Journal of Applied Physics, 2017, 122: 044302. doi: 10.1063/1.4995957
|
[42] |
Wu X L, Siu G G, Fu C L, et al. Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films. Applied Physics Letters, 2001, 78: 2285–2287. doi: 10.1063/1.1361288
|
[43] |
Kumar V, Swart H C, Ntwaeaborwa O M, et al. Origin of the red emission in zinc oxide nanophosphors. Materials Letters, 2013, 101: 57–60. doi: 10.1016/j.matlet.2013.03.073
|
[44] |
Perkins J, Foster G M, Myer M, et al. Impact of Mg content on native point defects in MgxZn1-xO (0≤x≤0.56). APL Materials, 2015, 3: 062801. doi: 10.1063/1.4915491
|
[45] |
Singha C, Panda E. Variation of electrical properties in thickening Al-doped ZnO films: role of defect chemistry. RSC Advances, 2016, 6: 48910–48918. doi: 10.1039/C6RA06513A
|
[46] |
Zhang H, Li W, Qin G P, et al. Role of zinc interstitial defects in indium and magnesium codoped ZnO transparent conducting films. Applied Surface Science, 2019, 492: 392–398. doi: 10.1016/j.apsusc.2019.06.245
|
[47] |
Dhawan R, Panda E. Mg addition in undoped and Al-doped ZnO films: Fabricating near UV transparent conductor by bandgap engineering. Journal of Alloys and Compounds, 2019, 788: 1037–1047. doi: 10.1016/j.jallcom.2019.02.289
|
[48] |
Ngom B D, Mpahane T, Manyala N, et al. Structural and optical properties of nano-structured tungsten-doped ZnO thin films grown by pulsed laser deposition. Applied Surface Science, 2009, 255 (7): 4153–4158. doi: 10.1016/j.apsusc.2008.10.122
|
[49] |
Burstein E. Anomalous Optical Absorption Limit in InSb. Physical Review, 1954, 93 (3): 632–633. doi: 10.1103/PhysRev.93.632
|
[50] |
Moss T S. The Interpretation of the Properties of Indium Antimonide. Proceedings of the Physical Society, 1954, 67: 775. doi: 10.1088/0370-1301/67/10/306
|
[51] |
Lu J G, Fujita S, Kawaharamura T, et al. Carrier concentration dependence of band gap shift in n-type ZnO: Al films. Journal of Applied Physics, 2007, 101: 083705. doi: 10.1063/1.2721374
|
[52] |
Kronenberger A, Polity A, Hofmann D M, et al. Structural, electrical, and optical properties of hydrogen-doped ZnO films. Physical Review B, 2012, 86 (11): 115334. doi: 10.1103/PhysRevB.86.115334
|
[53] |
Liu C, Yuan Y F, Zhang X T, et al. Ta Doping Effect on Structural and Optical Properties of InTe Thin Films. Nanomaterials, 2020, 10 (9): 1887. doi: 10.3390/nano10091887
|
[54] |
Saha D, Misra P, Joshi M P, et al. Investigating Optical Properties of Atomic Layer Deposited ZnO/TiOx Multi-stacked Thin Films Above Mott Critical Density. The Journal of Physical Chemistry C, 2017, 121 (33): 18129–18136. doi: 10.1021/acs.jpcc.7b05056
|
[55] |
Makino T, Segawa Y, Yoshida S, et al. Gallium concentration dependence of room-temperature near-band-edge luminescence in n-type ZnO: Ga. Applied Physics Letters, 2004, 85: 759–761. doi: 10.1063/1.1776630
|
[56] |
Luo J T, Zhu X Y, Chen G, et al. The electrical, optical and magnetic properties of Si-doped ZnO films. Applied Surface Science, 2012, 258 (6): 2177–2181. doi: 10.1016/j.apsusc.2011.02.093
|
[57] |
Mohanty B C, Yeon D H, Das S N, et al. Unusual near-band-edge photoluminescence at room temperature in heavily-doped ZnO: Al thin films prepared by pulsed laser deposition. Materials Chemistry and Physics, 2013, 140 (2-3): 610–615. doi: 10.1016/j.matchemphys.2013.04.014
|
[58] |
Wu F, Fang L, Pan Y J, et al. Effect of annealing treatment on structural, electrical, and optical properties of Ga-doped ZnO thin films deposited by RF magnetron sputtering. Thin Solid Films, 2011, 520 (2): 703–707. doi: 10.1016/j.tsf.2011.04.147
|
[59] |
Zheng Z, Lu Y F, Ye Z Z, et al. Carrier type- and concentration-dependent absorption and photoluminescence of ZnO films doped with different Na contents. Materials Science in Semiconductor Processing, 2013, 16 (3): 647–651. doi: 10.1016/j.mssp.2012.12.003
|
[60] |
Guan L, Liu B T, Li Q, et al. Electronic structure and optical properties of substitutional and interstitial phosphor-doped ZnO. Physics Letters A, 2011, 375 (5): 939–945. doi: 10.1016/j.physleta.2010.12.064
|
[61] |
Nashed R, Hassan W M I, Ismailc Y, et al. Unravelling the interplay of crystal structure and electronic band structure of tantalum oxide (Ta2O5). Physical Chemistry Chemical Physics, 2013, 15: 1352–1357. doi: 10.1039/C2CP43492J
|
[62] |
Jacobi K, Zwicker G, Gutmann A. Work function, electron affinity and band bending of zinc oxide surfaces. Surface Science, 1984, 141 (1): 109–125. doi: 10.1016/0039-6028(84)90199-7
|
[63] |
Song T S, Cho J W, Kim J H, et al. High ultraviolet transparent conducting electrodes formed using tantalum oxide/Ag multilayer. Ceramics International, 2022, 48 (3): 3536–3543. doi: 10.1016/j.ceramint.2021.10.132
|
[64] |
Takahashi R, Dazai T, TsukaharaY, et al. Mg substitution effect on the electron affinity of ZnO films. Journal of Applied Physics, 2022, 131: 175302. doi: 10.1063/5.0087044
|
[65] |
Tan S T, Chen B J, Sun X W, et al. Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition. Journal of Applied Physics, 2005, 98: 013505. doi: 10.1063/1.1940137
|
[66] |
Lu J G, Ye Z Z, Zhang Y Z, et al. Self-assembled ZnO quantum dots with tunable optical properties. Applied Physics Letters, 2006, 89: 023122. doi: 10.1063/1.2221892
|