ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Article 11 October 2024

Effect of tantalum doping on the microstructure and photoelectrical properties of transparent conductive zinc oxide films

Cite this:
CSTR: 32290.14.JUSTC-2024-0006
https://doi.org/10.52396/JUSTC-2024-0006
More Information
  • Corresponding author: Email Address: eedewang@ustc.edu.cn
  • Accepted Date: 12 July 2024
  • Available Online: 11 October 2024
  • ZnO thin films with varying Ta concentrations were fabricated through magnetron sputtering. The crystallinity and surface morphology of the ZnO films are significantly influenced by the incorporation of Ta, as evidenced by the X-ray diffraction and scanning electron microscopy results. The lattice constants, as determined by X-ray diffraction, contradict the disparity in Ta and Zn ion radii, which is attributed to the impact of interstitial defects. This inconsistency introduces variations in carrier concentration in this experiment compared with prior studies. Subsequent exploration of the luminescent characteristics and emission mechanism of defect levels in Ta-doped ZnO films was conducted through photoluminescence. Furthermore, the factors influencing the bandgap are discussed.
    ZnO thin films with varying Ta concentrations were fabricated through magnetron sputtering. The crystallinity and surface morphology of the ZnO films are significantly influenced by the incorporation of Ta, as evidenced by the X-ray diffraction and scanning electron microscopy results. The lattice constants, as determined by X-ray diffraction, contradict the disparity in Ta and Zn ion radii, which is attributed to the impact of interstitial defects. This inconsistency introduces variations in carrier concentration in this experiment compared with prior studies. Subsequent exploration of the luminescent characteristics and emission mechanism of defect levels in Ta-doped ZnO films was conducted through photoluminescence. Furthermore, the factors influencing the bandgap are discussed.

  • loading
  • [1]
    Moulahi A, Sediri F. Pencil-like zinc oxide micro/nano-scale structures: Hydrothermal synthesis, optical and photocatalytic properties. Materials Research Bulletin, 2013, 48: 3723–3728. doi: 10.1016/j.materresbull.2013.05.116
    [2]
    Faisal M, Ibrahim A A, Harraz F A, et al. SnO2 doped ZnO nanostructures for highly efficient photocatalyst. Journal of Molecular Catalysis A: Chemical, 2015, 397: 19–25. doi: 10.1016/j.molcata.2014.10.027
    [3]
    Amna S, Shahrom M, Azman S, et al. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Letters, 2015, 7: 219–242. doi: 10.1007/s40820-015-0040-x
    [4]
    Zhu L, Zeng W. Room-temperature gas sensing of ZnO-based gas sensor: A review. Sensors and Actuators A: Physical, 2017, 267 (1): 242–261. doi: 10.1016/j.sna.2017.10.021
    [5]
    Paul R, Arulkumar S, Jenifer K, et al. Al-Diffused ZnO Transparent Conducting Oxide Thin Films for Cadmium Telluride Superstrate Solar Cells: A Comprehensive Study. Journal of Electronic Materials, 2023, 52: 130–139. doi: 10.1007/s11664-022-10001-5
    [6]
    Mustaqima M, Liu C. ZnO-based nanostructures for diluted magnetic semiconductor. Turkish Journal of Physics, 2014, 38 (3): 429–441. doi: 10.3906/fiz-1405-17
    [7]
    Chen X X, Yin Z Z, Yan J L, et al. Fabrication of ZnO@Fe2O3 superhydrophobic coatings with high thermal conductivity. Surface and Coatings Technology, 2023, 467: 129701. doi: 10.1016/j.surfcoat.2023.129701
    [8]
    Yin Z Z, Yuan F, Zhou D P, et al. Ultra dynamic water repellency and anti-icing performance of superhydrophobic ZnO surface on the printed circuit board (PCB). Chemical Physics Letters, 2021, 771: 138558. doi: 10.1016/j.cplett.2021.138558
    [9]
    Yin Z Z, Xue M S, Luo Y D, et al. Excellent static and dynamic anti-icing properties of hierarchical structured ZnO superhydrophobic surface on Cu substrates. Chemical Physics Letters, 2020, 755: 137806. doi: 10.1016/j.cplett.2020.137806
    [10]
    Zhou T H, Yin Z Z, Chen X X, et al. Mussel-inspired fabrication of superior superhydrophobic cellulose-based composite membrane for efficient oil emulsions separation, excellent anti-microbial property and simultaneous photocatalytic dye degradation. Separation and Purification Technology, 2022, 286: 120504. doi: 10.1016/j.seppur.2022.120504
    [11]
    Li M, Yin Z Z, Li Z H, et al. A harsh environment resistant robust Co(OH)2@stearic acid nanocellulose-based membrane for oil-water separation and wastewater purification. Journal of Environmental Management, 2023, 342: 118127. doi: 10.1016/j.jenvman.2023.118127
    [12]
    Chang G S, Kurmaev E Z, Boukhvalov D W, et al. Co and Al co-doping for ferromagnetism in ZnO: Co diluted magnetic semiconductors. Journal of Physics: Condensed Matter, 2009, 21 (5): 056002. doi: 10.1088/0953-8984/21/5/056002
    [13]
    Ko H J, Chen Y F, Zhu Z, et al. Photoluminescence properties of ZnO epilayers grown on CaF2(111) by plasma assisted molecular beam epitaxy. Applied Physics Letters, 2000, 76: 1905–1907. doi: 10.1063/1.126207
    [14]
    Belghazi Y, Ait Aouaj M, Yadari M E, et al. Elaboration and characterization of Co-doped ZnO thin films deposited by spray pyrolysis technique. Microelectronics Journal, 2009, 40 (2): 265–267. doi: 10.1016/j.mejo.2008.07.051
    [15]
    Belghazi Y, Schmerber G, Colis S, et al. Room-temperature ferromagnetism in Co-doped ZnO thin films prepared by sol-gel method. Journal of Magnetism and Magnetic Materials, 2007, 310 (2): 2092–2094. doi: 10.1016/j.jmmm.2006.10.1138
    [16]
    Petersen J, Brimont C, Gallart M, et al. Correlation of structural properties with energy transfer of Eu-doped ZnO thin films prepared by sol-gel process and magnetron reactive sputtering. Journal of Applied Physics, 2010, 107: 123522. doi: 10.1063/1.3436628
    [17]
    Deng Y T, Xu F L, Yin Z Z, et al. Controllable fabrication of superhydrophobic alloys surface on 304 stainless steel substrate for anti-icing performance. Ceramics International, 2023, 49 (15): 25135–25143. doi: 10.1016/j.ceramint.2023.05.044
    [18]
    Yuan F, Yin Z Z, Xue M S, et al. A multifunctional and environmentally safe superhydrophobic membrane with superior oil/water separation, photocatalytic degradation and anti-biofouling performance. Journal of Colloid and Interface Science, 2022, 611: 93–104. doi: 10.1016/j.jcis.2021.12.070
    [19]
    Chen X X, Yin Z Z, Chen Z B, et al. Superhydrophobic Photocatalytic Self-Cleaning Nanocellulose-Based Strain Sensor for Full-Range Human Motion Monitoring. Advanced Materials Interfaces, 2023, 10 (33): 2300350. doi: 10.1002/admi.202300350
    [20]
    Janotti A, Van de Walle C G. Native point defects in ZnO. Physical Review B, 2007, 76 (16): 165202. doi: 10.1103/PhysRevB.76.165202
    [21]
    Yang Y H, Chen X Y, Feng Y, et al. Physical Mechanism of Blue-Shift of UV Luminescence of a Single Pencil-Like ZnO Nanowire. Nano Letters, 2007, 7 (12): 3879–3883. doi: 10.1021/nl071849h
    [22]
    Mahmood K, Song D, Park S B. Effects of thermal treatment on the characteristics of boron and tantalum-doped ZnO thin films deposited by the electrospraying method at atmospheric pressure. Surface and Coatings Technology, 2012, 206 (23): 4730–4740. doi: 10.1016/j.surfcoat.2012.01.047
    [23]
    Wu Y H, Li C P, Li M J, et al. Microstructural and optical properties of Ta-doped ZnO films prepared by radio frequency magnetron sputtering. Ceramics International, 2016, 42 (9): 10847–10853. doi: 10.1016/j.ceramint.2016.03.214
    [24]
    Cheng Y L, Cao L, He G, et al. Preparation, microstructure and photoelectrical properties of Tantalum-doped zinc oxide transparent conducting films. Journal of Alloys and Compounds, 2014, 608 (25): 85–89. doi: 10.1016/j.jallcom.2014.03.031
    [25]
    Liu X, Pan K, Li W B, et al. Optical and gas sensing properties of Al-doped ZnO transparent conducting films prepared by sol-gel method under different heat treatments. Ceramics International, 2014, 40 (7): 9931–9939. doi: 10.1016/j.ceramint.2014.02.090
    [26]
    Xu G Q, Shen X K, Hu Y, et al. Fabrication of tantalum oxide layers onto titanium substrates for improved corrosion resistance and cytocompatibility. Surface and Coatings Technology, 2015, 272 (25): 58–65. doi: 10.1016/j.surfcoat.2015.04.024
    [27]
    Su Y G, Lang J Y, Li L P, et al. Unexpected Catalytic Performance in Silent Tantalum Oxide through Nitridation and Defect Chemistry. Journal of the American Chemical Society, 2013, 135 (31): 11433–11436. doi: 10.1021/ja404239z
    [28]
    Wang L W, Wu F, Tian D X, et al. Effects of Na content on structural and optical properties of Na-doped ZnO thin films prepared by sol-gel method. Journal of Alloys and Compounds, 2015, 623 (25): 367–373. doi: 10.1016/j.jallcom.2014.11.055
    [29]
    Lee J H, Song J T. Dependence of the electrical and optical properties on the bias voltage for ZnO: Al films deposited by r. f. magnetron sputtering. Thin Solid Films, 2008, 516 (7): 1377–1381. doi: 10.1016/j.tsf.2007.03.078
    [30]
    Poongodi G, Kumar R M, Jayavel R. Structural, optical and visible light photocatalytic properties of nanocrystalline Nd doped ZnO thin films prepared by spin coating method. Ceramics International, 2015, 41 (3): 4169–4175. doi: 10.1016/j.ceramint.2014.12.098
    [31]
    Lv M S, Xiu X W, Pang Z Y, et al. Structural, electrical and optical properties of zirconium-doped zinc oxide films prepared by radio frequency magnetron sputtering. Thin Solid Films, 2008, 516 (8): 2017–2021. doi: 10.1016/j.tsf.2007.06.173
    [32]
    Soumahoro I, Colis S, Schmerber G, et al. Structural, optical, spectroscopic and electrical properties of Mo-doped ZnO thin films grown by radio frequency magnetron sputtering. Thin Solid Films, 2014, 566 (1): 61–69. doi: 10.1016/j.tsf.2014.07.017
    [33]
    Toma M, Domokos R, Lung C, et al. Characterization of ZnO, Ga-Doped ZnO, and Nd-Ga-Doped ZnO Thin Films Synthesized by Radiofrequency Magnetron Sputtering. Analytical Letters, 2023. doi: 10.1080/00032719.2023.2225199
    [34]
    Ravichandran K, Subha K, Dineshbabu K, et al. Enhancing the electrical parameters of ZnO films deposited using a low-cost chemical spray technique through Ta doping. Journal of Alloys and Compounds, 2016, 656 (25): 332–338. doi: 10.1016/j.jallcom.2015.09.115
    [35]
    Nistor M, Mihut L, Millon E, et al. Tailored electric and optical properties of Nd doped ZnO: from transparent conducting oxide to photon down-shifting thin films. RSC Advances, 2016, 6: 41465–41472. doi: 10.1039/C6RA07669F
    [36]
    Janotti A, Van de Walle C G. Fundamentals of zinc oxide as a semiconductor. Reports on Progress in Physics, 2009, 72: 126501. doi: 10.1088/0034-4885/72/12/126501
    [37]
    Wang Y G, Lau S P, Lee H W, et al. Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air. Journal of Applied Physics, 2003, 94: 354–358. doi: 10.1063/1.1577819
    [38]
    Lv J G, Liu C L, Gong W B, et al. Temperature-dependent shifts of near band-edge emission and their second-order diffraction for ZnO nanorods. Optical Materials, 2012, 34 (11): 1917–1920. doi: 10.1016/j.optmat.2012.05.030
    [39]
    Wang M S, Zhou Y J, Zhang Y P, et al. Near-infrared photoluminescence from ZnO. Applied Physics Letters, 2012, 100: 101906. doi: 10.1063/1.3692584
    [40]
    Kayaci F, Vempati S, Donmez I, et al. Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: a bottom-up approach to control defect density. Nanoscale, 2014, 6: 10224–10234. doi: 10.1039/C4NR01887G
    [41]
    Biroju R K, Giri P K. Strong visible and near infrared photoluminescence from ZnO nanorods/nanowires grown on single layer graphene studied using sub-band gap excitation. Journal of Applied Physics, 2017, 122: 044302. doi: 10.1063/1.4995957
    [42]
    Wu X L, Siu G G, Fu C L, et al. Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films. Applied Physics Letters, 2001, 78: 2285–2287. doi: 10.1063/1.1361288
    [43]
    Kumar V, Swart H C, Ntwaeaborwa O M, et al. Origin of the red emission in zinc oxide nanophosphors. Materials Letters, 2013, 101: 57–60. doi: 10.1016/j.matlet.2013.03.073
    [44]
    Perkins J, Foster G M, Myer M, et al. Impact of Mg content on native point defects in MgxZn1-xO (0≤x≤0.56). APL Materials, 2015, 3: 062801. doi: 10.1063/1.4915491
    [45]
    Singha C, Panda E. Variation of electrical properties in thickening Al-doped ZnO films: role of defect chemistry. RSC Advances, 2016, 6: 48910–48918. doi: 10.1039/C6RA06513A
    [46]
    Zhang H, Li W, Qin G P, et al. Role of zinc interstitial defects in indium and magnesium codoped ZnO transparent conducting films. Applied Surface Science, 2019, 492: 392–398. doi: 10.1016/j.apsusc.2019.06.245
    [47]
    Dhawan R, Panda E. Mg addition in undoped and Al-doped ZnO films: Fabricating near UV transparent conductor by bandgap engineering. Journal of Alloys and Compounds, 2019, 788: 1037–1047. doi: 10.1016/j.jallcom.2019.02.289
    [48]
    Ngom B D, Mpahane T, Manyala N, et al. Structural and optical properties of nano-structured tungsten-doped ZnO thin films grown by pulsed laser deposition. Applied Surface Science, 2009, 255 (7): 4153–4158. doi: 10.1016/j.apsusc.2008.10.122
    [49]
    Burstein E. Anomalous Optical Absorption Limit in InSb. Physical Review, 1954, 93 (3): 632–633. doi: 10.1103/PhysRev.93.632
    [50]
    Moss T S. The Interpretation of the Properties of Indium Antimonide. Proceedings of the Physical Society, 1954, 67: 775. doi: 10.1088/0370-1301/67/10/306
    [51]
    Lu J G, Fujita S, Kawaharamura T, et al. Carrier concentration dependence of band gap shift in n-type ZnO: Al films. Journal of Applied Physics, 2007, 101: 083705. doi: 10.1063/1.2721374
    [52]
    Kronenberger A, Polity A, Hofmann D M, et al. Structural, electrical, and optical properties of hydrogen-doped ZnO films. Physical Review B, 2012, 86 (11): 115334. doi: 10.1103/PhysRevB.86.115334
    [53]
    Liu C, Yuan Y F, Zhang X T, et al. Ta Doping Effect on Structural and Optical Properties of InTe Thin Films. Nanomaterials, 2020, 10 (9): 1887. doi: 10.3390/nano10091887
    [54]
    Saha D, Misra P, Joshi M P, et al. Investigating Optical Properties of Atomic Layer Deposited ZnO/TiOx Multi-stacked Thin Films Above Mott Critical Density. The Journal of Physical Chemistry C, 2017, 121 (33): 18129–18136. doi: 10.1021/acs.jpcc.7b05056
    [55]
    Makino T, Segawa Y, Yoshida S, et al. Gallium concentration dependence of room-temperature near-band-edge luminescence in n-type ZnO: Ga. Applied Physics Letters, 2004, 85: 759–761. doi: 10.1063/1.1776630
    [56]
    Luo J T, Zhu X Y, Chen G, et al. The electrical, optical and magnetic properties of Si-doped ZnO films. Applied Surface Science, 2012, 258 (6): 2177–2181. doi: 10.1016/j.apsusc.2011.02.093
    [57]
    Mohanty B C, Yeon D H, Das S N, et al. Unusual near-band-edge photoluminescence at room temperature in heavily-doped ZnO: Al thin films prepared by pulsed laser deposition. Materials Chemistry and Physics, 2013, 140 (2-3): 610–615. doi: 10.1016/j.matchemphys.2013.04.014
    [58]
    Wu F, Fang L, Pan Y J, et al. Effect of annealing treatment on structural, electrical, and optical properties of Ga-doped ZnO thin films deposited by RF magnetron sputtering. Thin Solid Films, 2011, 520 (2): 703–707. doi: 10.1016/j.tsf.2011.04.147
    [59]
    Zheng Z, Lu Y F, Ye Z Z, et al. Carrier type- and concentration-dependent absorption and photoluminescence of ZnO films doped with different Na contents. Materials Science in Semiconductor Processing, 2013, 16 (3): 647–651. doi: 10.1016/j.mssp.2012.12.003
    [60]
    Guan L, Liu B T, Li Q, et al. Electronic structure and optical properties of substitutional and interstitial phosphor-doped ZnO. Physics Letters A, 2011, 375 (5): 939–945. doi: 10.1016/j.physleta.2010.12.064
    [61]
    Nashed R, Hassan W M I, Ismailc Y, et al. Unravelling the interplay of crystal structure and electronic band structure of tantalum oxide (Ta2O5). Physical Chemistry Chemical Physics, 2013, 15: 1352–1357. doi: 10.1039/C2CP43492J
    [62]
    Jacobi K, Zwicker G, Gutmann A. Work function, electron affinity and band bending of zinc oxide surfaces. Surface Science, 1984, 141 (1): 109–125. doi: 10.1016/0039-6028(84)90199-7
    [63]
    Song T S, Cho J W, Kim J H, et al. High ultraviolet transparent conducting electrodes formed using tantalum oxide/Ag multilayer. Ceramics International, 2022, 48 (3): 3536–3543. doi: 10.1016/j.ceramint.2021.10.132
    [64]
    Takahashi R, Dazai T, TsukaharaY, et al. Mg substitution effect on the electron affinity of ZnO films. Journal of Applied Physics, 2022, 131: 175302. doi: 10.1063/5.0087044
    [65]
    Tan S T, Chen B J, Sun X W, et al. Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition. Journal of Applied Physics, 2005, 98: 013505. doi: 10.1063/1.1940137
    [66]
    Lu J G, Ye Z Z, Zhang Y Z, et al. Self-assembled ZnO quantum dots with tunable optical properties. Applied Physics Letters, 2006, 89: 023122. doi: 10.1063/1.2221892
  • 加载中

Catalog

    Figure  1.  (a) EDS of Ta-doped ZnO thin films; (b) relationship between Ta content and sputtering power.

    Figure  4.  Surface morphology of ZnO thin films with different Ta contents.

    Figure  2.  XPS spectra of Ta-doped ZnO thin films: (a) full spectrum; (b) Zn 2p peak; (c) Ta 4f peak.

    Figure  3.  (a) XRD of Ta-doped ZnO thin films; (b) relationships between the Ta content and the resistivity, carrier density, and mobility.

    Figure  5.  PL spectra of samples and substrates at different excitation wavelengths: (a) 532 nm, (b) 473 nm, (c) 325 nm, and (d) normalized PL spectrum of (c).

    Figure  6.  (a) (b) (c) (d) (e): Gaussian fitting of the visible light region of ZnO films with different Ta contents; (f) intensity ratios of the blue, green, yellow, and orange emission peaks to the UV emission peaks.

    Figure  7.  (a) Ultraviolet‒visible transmittance spectra; (b) plot of (αhν)2 vs. hν; (c) plot of dT/dE vs. hν; (d) band gaps obtained from the Tauc plots, dT/dE plots, and PL spectra.

    [1]
    Moulahi A, Sediri F. Pencil-like zinc oxide micro/nano-scale structures: Hydrothermal synthesis, optical and photocatalytic properties. Materials Research Bulletin, 2013, 48: 3723–3728. doi: 10.1016/j.materresbull.2013.05.116
    [2]
    Faisal M, Ibrahim A A, Harraz F A, et al. SnO2 doped ZnO nanostructures for highly efficient photocatalyst. Journal of Molecular Catalysis A: Chemical, 2015, 397: 19–25. doi: 10.1016/j.molcata.2014.10.027
    [3]
    Amna S, Shahrom M, Azman S, et al. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Letters, 2015, 7: 219–242. doi: 10.1007/s40820-015-0040-x
    [4]
    Zhu L, Zeng W. Room-temperature gas sensing of ZnO-based gas sensor: A review. Sensors and Actuators A: Physical, 2017, 267 (1): 242–261. doi: 10.1016/j.sna.2017.10.021
    [5]
    Paul R, Arulkumar S, Jenifer K, et al. Al-Diffused ZnO Transparent Conducting Oxide Thin Films for Cadmium Telluride Superstrate Solar Cells: A Comprehensive Study. Journal of Electronic Materials, 2023, 52: 130–139. doi: 10.1007/s11664-022-10001-5
    [6]
    Mustaqima M, Liu C. ZnO-based nanostructures for diluted magnetic semiconductor. Turkish Journal of Physics, 2014, 38 (3): 429–441. doi: 10.3906/fiz-1405-17
    [7]
    Chen X X, Yin Z Z, Yan J L, et al. Fabrication of ZnO@Fe2O3 superhydrophobic coatings with high thermal conductivity. Surface and Coatings Technology, 2023, 467: 129701. doi: 10.1016/j.surfcoat.2023.129701
    [8]
    Yin Z Z, Yuan F, Zhou D P, et al. Ultra dynamic water repellency and anti-icing performance of superhydrophobic ZnO surface on the printed circuit board (PCB). Chemical Physics Letters, 2021, 771: 138558. doi: 10.1016/j.cplett.2021.138558
    [9]
    Yin Z Z, Xue M S, Luo Y D, et al. Excellent static and dynamic anti-icing properties of hierarchical structured ZnO superhydrophobic surface on Cu substrates. Chemical Physics Letters, 2020, 755: 137806. doi: 10.1016/j.cplett.2020.137806
    [10]
    Zhou T H, Yin Z Z, Chen X X, et al. Mussel-inspired fabrication of superior superhydrophobic cellulose-based composite membrane for efficient oil emulsions separation, excellent anti-microbial property and simultaneous photocatalytic dye degradation. Separation and Purification Technology, 2022, 286: 120504. doi: 10.1016/j.seppur.2022.120504
    [11]
    Li M, Yin Z Z, Li Z H, et al. A harsh environment resistant robust Co(OH)2@stearic acid nanocellulose-based membrane for oil-water separation and wastewater purification. Journal of Environmental Management, 2023, 342: 118127. doi: 10.1016/j.jenvman.2023.118127
    [12]
    Chang G S, Kurmaev E Z, Boukhvalov D W, et al. Co and Al co-doping for ferromagnetism in ZnO: Co diluted magnetic semiconductors. Journal of Physics: Condensed Matter, 2009, 21 (5): 056002. doi: 10.1088/0953-8984/21/5/056002
    [13]
    Ko H J, Chen Y F, Zhu Z, et al. Photoluminescence properties of ZnO epilayers grown on CaF2(111) by plasma assisted molecular beam epitaxy. Applied Physics Letters, 2000, 76: 1905–1907. doi: 10.1063/1.126207
    [14]
    Belghazi Y, Ait Aouaj M, Yadari M E, et al. Elaboration and characterization of Co-doped ZnO thin films deposited by spray pyrolysis technique. Microelectronics Journal, 2009, 40 (2): 265–267. doi: 10.1016/j.mejo.2008.07.051
    [15]
    Belghazi Y, Schmerber G, Colis S, et al. Room-temperature ferromagnetism in Co-doped ZnO thin films prepared by sol-gel method. Journal of Magnetism and Magnetic Materials, 2007, 310 (2): 2092–2094. doi: 10.1016/j.jmmm.2006.10.1138
    [16]
    Petersen J, Brimont C, Gallart M, et al. Correlation of structural properties with energy transfer of Eu-doped ZnO thin films prepared by sol-gel process and magnetron reactive sputtering. Journal of Applied Physics, 2010, 107: 123522. doi: 10.1063/1.3436628
    [17]
    Deng Y T, Xu F L, Yin Z Z, et al. Controllable fabrication of superhydrophobic alloys surface on 304 stainless steel substrate for anti-icing performance. Ceramics International, 2023, 49 (15): 25135–25143. doi: 10.1016/j.ceramint.2023.05.044
    [18]
    Yuan F, Yin Z Z, Xue M S, et al. A multifunctional and environmentally safe superhydrophobic membrane with superior oil/water separation, photocatalytic degradation and anti-biofouling performance. Journal of Colloid and Interface Science, 2022, 611: 93–104. doi: 10.1016/j.jcis.2021.12.070
    [19]
    Chen X X, Yin Z Z, Chen Z B, et al. Superhydrophobic Photocatalytic Self-Cleaning Nanocellulose-Based Strain Sensor for Full-Range Human Motion Monitoring. Advanced Materials Interfaces, 2023, 10 (33): 2300350. doi: 10.1002/admi.202300350
    [20]
    Janotti A, Van de Walle C G. Native point defects in ZnO. Physical Review B, 2007, 76 (16): 165202. doi: 10.1103/PhysRevB.76.165202
    [21]
    Yang Y H, Chen X Y, Feng Y, et al. Physical Mechanism of Blue-Shift of UV Luminescence of a Single Pencil-Like ZnO Nanowire. Nano Letters, 2007, 7 (12): 3879–3883. doi: 10.1021/nl071849h
    [22]
    Mahmood K, Song D, Park S B. Effects of thermal treatment on the characteristics of boron and tantalum-doped ZnO thin films deposited by the electrospraying method at atmospheric pressure. Surface and Coatings Technology, 2012, 206 (23): 4730–4740. doi: 10.1016/j.surfcoat.2012.01.047
    [23]
    Wu Y H, Li C P, Li M J, et al. Microstructural and optical properties of Ta-doped ZnO films prepared by radio frequency magnetron sputtering. Ceramics International, 2016, 42 (9): 10847–10853. doi: 10.1016/j.ceramint.2016.03.214
    [24]
    Cheng Y L, Cao L, He G, et al. Preparation, microstructure and photoelectrical properties of Tantalum-doped zinc oxide transparent conducting films. Journal of Alloys and Compounds, 2014, 608 (25): 85–89. doi: 10.1016/j.jallcom.2014.03.031
    [25]
    Liu X, Pan K, Li W B, et al. Optical and gas sensing properties of Al-doped ZnO transparent conducting films prepared by sol-gel method under different heat treatments. Ceramics International, 2014, 40 (7): 9931–9939. doi: 10.1016/j.ceramint.2014.02.090
    [26]
    Xu G Q, Shen X K, Hu Y, et al. Fabrication of tantalum oxide layers onto titanium substrates for improved corrosion resistance and cytocompatibility. Surface and Coatings Technology, 2015, 272 (25): 58–65. doi: 10.1016/j.surfcoat.2015.04.024
    [27]
    Su Y G, Lang J Y, Li L P, et al. Unexpected Catalytic Performance in Silent Tantalum Oxide through Nitridation and Defect Chemistry. Journal of the American Chemical Society, 2013, 135 (31): 11433–11436. doi: 10.1021/ja404239z
    [28]
    Wang L W, Wu F, Tian D X, et al. Effects of Na content on structural and optical properties of Na-doped ZnO thin films prepared by sol-gel method. Journal of Alloys and Compounds, 2015, 623 (25): 367–373. doi: 10.1016/j.jallcom.2014.11.055
    [29]
    Lee J H, Song J T. Dependence of the electrical and optical properties on the bias voltage for ZnO: Al films deposited by r. f. magnetron sputtering. Thin Solid Films, 2008, 516 (7): 1377–1381. doi: 10.1016/j.tsf.2007.03.078
    [30]
    Poongodi G, Kumar R M, Jayavel R. Structural, optical and visible light photocatalytic properties of nanocrystalline Nd doped ZnO thin films prepared by spin coating method. Ceramics International, 2015, 41 (3): 4169–4175. doi: 10.1016/j.ceramint.2014.12.098
    [31]
    Lv M S, Xiu X W, Pang Z Y, et al. Structural, electrical and optical properties of zirconium-doped zinc oxide films prepared by radio frequency magnetron sputtering. Thin Solid Films, 2008, 516 (8): 2017–2021. doi: 10.1016/j.tsf.2007.06.173
    [32]
    Soumahoro I, Colis S, Schmerber G, et al. Structural, optical, spectroscopic and electrical properties of Mo-doped ZnO thin films grown by radio frequency magnetron sputtering. Thin Solid Films, 2014, 566 (1): 61–69. doi: 10.1016/j.tsf.2014.07.017
    [33]
    Toma M, Domokos R, Lung C, et al. Characterization of ZnO, Ga-Doped ZnO, and Nd-Ga-Doped ZnO Thin Films Synthesized by Radiofrequency Magnetron Sputtering. Analytical Letters, 2023. doi: 10.1080/00032719.2023.2225199
    [34]
    Ravichandran K, Subha K, Dineshbabu K, et al. Enhancing the electrical parameters of ZnO films deposited using a low-cost chemical spray technique through Ta doping. Journal of Alloys and Compounds, 2016, 656 (25): 332–338. doi: 10.1016/j.jallcom.2015.09.115
    [35]
    Nistor M, Mihut L, Millon E, et al. Tailored electric and optical properties of Nd doped ZnO: from transparent conducting oxide to photon down-shifting thin films. RSC Advances, 2016, 6: 41465–41472. doi: 10.1039/C6RA07669F
    [36]
    Janotti A, Van de Walle C G. Fundamentals of zinc oxide as a semiconductor. Reports on Progress in Physics, 2009, 72: 126501. doi: 10.1088/0034-4885/72/12/126501
    [37]
    Wang Y G, Lau S P, Lee H W, et al. Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air. Journal of Applied Physics, 2003, 94: 354–358. doi: 10.1063/1.1577819
    [38]
    Lv J G, Liu C L, Gong W B, et al. Temperature-dependent shifts of near band-edge emission and their second-order diffraction for ZnO nanorods. Optical Materials, 2012, 34 (11): 1917–1920. doi: 10.1016/j.optmat.2012.05.030
    [39]
    Wang M S, Zhou Y J, Zhang Y P, et al. Near-infrared photoluminescence from ZnO. Applied Physics Letters, 2012, 100: 101906. doi: 10.1063/1.3692584
    [40]
    Kayaci F, Vempati S, Donmez I, et al. Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: a bottom-up approach to control defect density. Nanoscale, 2014, 6: 10224–10234. doi: 10.1039/C4NR01887G
    [41]
    Biroju R K, Giri P K. Strong visible and near infrared photoluminescence from ZnO nanorods/nanowires grown on single layer graphene studied using sub-band gap excitation. Journal of Applied Physics, 2017, 122: 044302. doi: 10.1063/1.4995957
    [42]
    Wu X L, Siu G G, Fu C L, et al. Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films. Applied Physics Letters, 2001, 78: 2285–2287. doi: 10.1063/1.1361288
    [43]
    Kumar V, Swart H C, Ntwaeaborwa O M, et al. Origin of the red emission in zinc oxide nanophosphors. Materials Letters, 2013, 101: 57–60. doi: 10.1016/j.matlet.2013.03.073
    [44]
    Perkins J, Foster G M, Myer M, et al. Impact of Mg content on native point defects in MgxZn1-xO (0≤x≤0.56). APL Materials, 2015, 3: 062801. doi: 10.1063/1.4915491
    [45]
    Singha C, Panda E. Variation of electrical properties in thickening Al-doped ZnO films: role of defect chemistry. RSC Advances, 2016, 6: 48910–48918. doi: 10.1039/C6RA06513A
    [46]
    Zhang H, Li W, Qin G P, et al. Role of zinc interstitial defects in indium and magnesium codoped ZnO transparent conducting films. Applied Surface Science, 2019, 492: 392–398. doi: 10.1016/j.apsusc.2019.06.245
    [47]
    Dhawan R, Panda E. Mg addition in undoped and Al-doped ZnO films: Fabricating near UV transparent conductor by bandgap engineering. Journal of Alloys and Compounds, 2019, 788: 1037–1047. doi: 10.1016/j.jallcom.2019.02.289
    [48]
    Ngom B D, Mpahane T, Manyala N, et al. Structural and optical properties of nano-structured tungsten-doped ZnO thin films grown by pulsed laser deposition. Applied Surface Science, 2009, 255 (7): 4153–4158. doi: 10.1016/j.apsusc.2008.10.122
    [49]
    Burstein E. Anomalous Optical Absorption Limit in InSb. Physical Review, 1954, 93 (3): 632–633. doi: 10.1103/PhysRev.93.632
    [50]
    Moss T S. The Interpretation of the Properties of Indium Antimonide. Proceedings of the Physical Society, 1954, 67: 775. doi: 10.1088/0370-1301/67/10/306
    [51]
    Lu J G, Fujita S, Kawaharamura T, et al. Carrier concentration dependence of band gap shift in n-type ZnO: Al films. Journal of Applied Physics, 2007, 101: 083705. doi: 10.1063/1.2721374
    [52]
    Kronenberger A, Polity A, Hofmann D M, et al. Structural, electrical, and optical properties of hydrogen-doped ZnO films. Physical Review B, 2012, 86 (11): 115334. doi: 10.1103/PhysRevB.86.115334
    [53]
    Liu C, Yuan Y F, Zhang X T, et al. Ta Doping Effect on Structural and Optical Properties of InTe Thin Films. Nanomaterials, 2020, 10 (9): 1887. doi: 10.3390/nano10091887
    [54]
    Saha D, Misra P, Joshi M P, et al. Investigating Optical Properties of Atomic Layer Deposited ZnO/TiOx Multi-stacked Thin Films Above Mott Critical Density. The Journal of Physical Chemistry C, 2017, 121 (33): 18129–18136. doi: 10.1021/acs.jpcc.7b05056
    [55]
    Makino T, Segawa Y, Yoshida S, et al. Gallium concentration dependence of room-temperature near-band-edge luminescence in n-type ZnO: Ga. Applied Physics Letters, 2004, 85: 759–761. doi: 10.1063/1.1776630
    [56]
    Luo J T, Zhu X Y, Chen G, et al. The electrical, optical and magnetic properties of Si-doped ZnO films. Applied Surface Science, 2012, 258 (6): 2177–2181. doi: 10.1016/j.apsusc.2011.02.093
    [57]
    Mohanty B C, Yeon D H, Das S N, et al. Unusual near-band-edge photoluminescence at room temperature in heavily-doped ZnO: Al thin films prepared by pulsed laser deposition. Materials Chemistry and Physics, 2013, 140 (2-3): 610–615. doi: 10.1016/j.matchemphys.2013.04.014
    [58]
    Wu F, Fang L, Pan Y J, et al. Effect of annealing treatment on structural, electrical, and optical properties of Ga-doped ZnO thin films deposited by RF magnetron sputtering. Thin Solid Films, 2011, 520 (2): 703–707. doi: 10.1016/j.tsf.2011.04.147
    [59]
    Zheng Z, Lu Y F, Ye Z Z, et al. Carrier type- and concentration-dependent absorption and photoluminescence of ZnO films doped with different Na contents. Materials Science in Semiconductor Processing, 2013, 16 (3): 647–651. doi: 10.1016/j.mssp.2012.12.003
    [60]
    Guan L, Liu B T, Li Q, et al. Electronic structure and optical properties of substitutional and interstitial phosphor-doped ZnO. Physics Letters A, 2011, 375 (5): 939–945. doi: 10.1016/j.physleta.2010.12.064
    [61]
    Nashed R, Hassan W M I, Ismailc Y, et al. Unravelling the interplay of crystal structure and electronic band structure of tantalum oxide (Ta2O5). Physical Chemistry Chemical Physics, 2013, 15: 1352–1357. doi: 10.1039/C2CP43492J
    [62]
    Jacobi K, Zwicker G, Gutmann A. Work function, electron affinity and band bending of zinc oxide surfaces. Surface Science, 1984, 141 (1): 109–125. doi: 10.1016/0039-6028(84)90199-7
    [63]
    Song T S, Cho J W, Kim J H, et al. High ultraviolet transparent conducting electrodes formed using tantalum oxide/Ag multilayer. Ceramics International, 2022, 48 (3): 3536–3543. doi: 10.1016/j.ceramint.2021.10.132
    [64]
    Takahashi R, Dazai T, TsukaharaY, et al. Mg substitution effect on the electron affinity of ZnO films. Journal of Applied Physics, 2022, 131: 175302. doi: 10.1063/5.0087044
    [65]
    Tan S T, Chen B J, Sun X W, et al. Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition. Journal of Applied Physics, 2005, 98: 013505. doi: 10.1063/1.1940137
    [66]
    Lu J G, Ye Z Z, Zhang Y Z, et al. Self-assembled ZnO quantum dots with tunable optical properties. Applied Physics Letters, 2006, 89: 023122. doi: 10.1063/1.2221892

    Article Metrics

    Article views (132) PDF downloads(380)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return