[1] |
Griswold M A, Jakob P M, Heidemann R M, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magnetic Resonance in Medicine, 2002, 47 (6): 1202–1210. doi: 10.1002/mrm.10171
|
[2] |
Lustig M, Donoho D, Pauly J M. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine, 2007, 58 (6): 1182–1195. doi: 10.1002/mrm.21391
|
[3] |
Pruessmann K P, Weiger M, Scheidegger M B, et al. SENSE: sensitivity encoding for fast MRI. Magnetic Resonance in Medicine, 1999, 42 (5): 952–962. doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
|
[4] |
Lustig M, Pauly J M. SPIRiT: Iterative self-consistent parallel imaging reconstruction from arbitrary k-space. Magnetic Resonance in Medicine, 2010, 64 (2): 457–471. doi: 10.1002/mrm.22428
|
[5] |
Uecker M, Lai P, Murphy M J, et al. ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magnetic Resonance in Medicine, 2014, 71 (3): 990–1001. doi: 10.1002/mrm.24751
|
[6] |
Lustig M, Donoho D L, Santos J M, et al. Compressed sensing MRI. IEEE Signal Processing Magazine, 2008, 25 (2): 72–82. doi: 10.1109/MSP.2007.914728
|
[7] |
Qu X, Cao X, Guo D, et al. Combined sparsifying transforms for compressed sensing MRI. Electronics Letters, 2010, 46 (2): 121–123. doi: 10.1049/el.2010.1845
|
[8] |
Haldar J P, Zhuo J W. P-LORAKS: Low-rank modeling of local k-space neighborhoods with parallel imaging data. Magnetic Resonance in Medicine, 2016, 75 (4): 1499–1514. doi: 10.1002/mrm.25717
|
[9] |
Block K T, Uecker M, Frahm J. Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint. Magnetic Resonance in Medicine, 2007, 57 (6): 1086–1098. doi: 10.1002/mrm.21236
|
[10] |
Wang S S, Su Z H, Ying L, et al. Accelerating magnetic resonance imaging via deep learning. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). Prague, Czech Republic: IEEE, 2016: 514–517.
|
[11] |
Schlemper J, Caballero J, Hajnal J V, et al. A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Transactions on Medical Imaging, 2018, 37 (2): 491–503. doi: 10.1109/TMI.2017.2760978
|
[12] |
Sun L Y, Fan Z W, Huang Y, et al. Compressed sensing MRI using a recursive dilated network. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18). New Orleans, LA: AAAI, 2018: 2444–2451.
|
[13] |
Ding P L K, Li Z Q, Zho Y X, et al. Deep residual dense U-Net for resolution enhancement in accelerated MRI acquisition. In: Proc. SPIE 10949, Medical Imaging 2019: Image Processing. SPIE, 2019 , 10949: 109490F.
|
[14] |
Dai Y X, Zhuang P X. Compressed sensing MRI via a multi-scale dilated residual convolution network. Magnetic Resonance Imaging, 2019, 63: 93–104. doi: 10.1016/j.mri.2019.07.014
|
[15] |
Yang G, Yu S M, Dong H, et al. DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Transactions on Medical Imaging, 2018, 37 (6): 1310–1321. doi: 10.1109/TMI.2017.2785879
|
[16] |
Quan T M, Nguyen-Duc T, Jeong W K. Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss. IEEE Transactions on Medical Imaging, 2018, 37 (6): 1488–1497. doi: 10.1109/TMI.2018.2820120
|
[17] |
Eo T, Jun Y, Kim T, et al. KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images. Magnetic Resonance in Medicine, 2018, 80 (5): 2188–2201. doi: 10.1002/mrm.27201
|
[18] |
Wang Z L, Jiang H T, Du H W, et al. IKWI-net: A cross-domain convolutional neural network for undersampled magnetic resonance image reconstruction. Magnetic Resonance Imaging, 2020, 73: 1–10. doi: 10.1016/j.mri.2020.06.015
|
[19] |
Zhou B, Zhou S K. DuDoRNet: learning a dual-domain recurrent network for fast MRI reconstruction with deep T1 prior. In: Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 4272–4281.
|
[20] |
Ran M S, Xia W J, Huang Y Q, et al. MD-Recon-Net: a parallel dual-domain convolutional neural network for compressed sensing MRI. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5 (1): 120–135. doi: 10.1109/TRPMS.2020.2991877
|
[21] |
Liu Y, Pang Y W, Liu X H, et al. DIIK-Net: A full-resolution cross-domain deep interaction convolutional neural network for MR image reconstruction. Neurocomputing, 2023, 517: 213–222. doi: 10.1016/j.neucom.2022.09.048
|
[22] |
Han Y, Sunwoo L, Ye J C. k-space deep learning for accelerated MRI. IEEE Transactions on Medical Imaging, 2020, 39 (2): 377–386. doi: 10.1109/TMI.2019.2927101
|
[23] |
Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells W, et al. , editors. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Cham: Springer, 2015: 234–241.
|
[24] |
Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science, 2006, 313 (5786): 504–507. doi: 10.1126/science.1127647
|
[25] |
Martínez H P, Yannakakis G N. Deep multimodal fusion: combining discrete events and continuous signals. In: ICMI ’14: Proceedings of the 16th International Conference on Multimodal Interaction. New York: ACM, 2014: 34–41.
|
[26] |
Xiang L, Chen Y, Chang W T, et al. Deep-learning-based multi-modal fusion for fast MR reconstruction. IEEE Transactions on Biomedical Engineering, 2018, 66 (7): 2105–2114. doi: 10.1109/TBME.2018.2883958
|
[27] |
Xuan K, Xiang L, Huang X Q, et al. Multimodal MRI reconstruction assisted with spatial alignment network. IEEE Transactions on Medical Imaging, 2022, 41 (9): 2499–2509. doi: 10.1109/TMI.2022.3164050
|
[28] |
Zhang Y L, Tian Y P, Kong Y, et al. Residual dense network for image super-resolution. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 2472–2481.
|
[29] |
Kim D W, Chung J R, Jung S W. GRDN: grouped residual dense network for real image denoising and GAN-based real-world noise modeling. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE Press, 2019: 2086–2094.
|
[30] |
Hu J, Shen L, Sun G. Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 7132–7141.
|
[31] |
Woo S H, Park J, Lee J Y, et al. CBAM: convolutional block attention module. In: Ferrari V, Hebert M, Sminchisescu C, et al. , editors. Computer Vision – ECCV 2018. Cham: Springer, 2018: 3–19.
|
[32] |
Qin C, Schlemper J, Caballero J, et al. Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE Transactions on Medical Imaging, 2019, 38 (1): 280–290. doi: 10.1109/TMI.2018.2863670
|
[33] |
Bakas S, Reyes M, Jakab A, et al. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv: 1811.02629, 2018 .
|
[34] |
Menze B H, Jakab A, Bauer S, et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Transactions on Medical Imaging, 2015, 34 (10): 1993–2024. doi: 10.1109/TMI.2014.2377694
|
[35] |
Zbontar J K F, Sriram A. fastMRI: an open dataset and benchmarks for accelerated MRI. arXiv: 1811.08839, 2018 .
|
[36] |
Xuan K, Sun S, Xue Z, et al. Learning MRI k-space subsampling pattern using progressive weight pruning. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. Cham: Springer, 2020: 178–187.
|
[37] |
Wang P Q, Chen P F, Yuan Y, et al. Understanding convolution for semantic segmentation. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). Piscataway: IEEE Press, 2018: 1451–1460.
|
Figure 4. Block diagrams of component modules. (a) The residual dense (RD) block, which contains several 3×3 convolution and LeakyReLU combined convolution layers and one 1×1 convolution layer for dimensionality reduction. The growth rate of the dense blocks is set to 32, and the number of combined convolution layers is set to 6. (b) Fusion attention (FA) block. (c) The residual dilated dense attention (RDDA) block, which uses the residual dilated dense (RDD) block and FA block for feature extraction, and 1×1 convolution for channel dimensionality reduction. The RDD module replaced the ordinary convolution in Fig. 4(a) with dilated convolution of different dilation rates. (d) Dual-domain interaction (DDI) block.
[1] |
Griswold M A, Jakob P M, Heidemann R M, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magnetic Resonance in Medicine, 2002, 47 (6): 1202–1210. doi: 10.1002/mrm.10171
|
[2] |
Lustig M, Donoho D, Pauly J M. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine, 2007, 58 (6): 1182–1195. doi: 10.1002/mrm.21391
|
[3] |
Pruessmann K P, Weiger M, Scheidegger M B, et al. SENSE: sensitivity encoding for fast MRI. Magnetic Resonance in Medicine, 1999, 42 (5): 952–962. doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
|
[4] |
Lustig M, Pauly J M. SPIRiT: Iterative self-consistent parallel imaging reconstruction from arbitrary k-space. Magnetic Resonance in Medicine, 2010, 64 (2): 457–471. doi: 10.1002/mrm.22428
|
[5] |
Uecker M, Lai P, Murphy M J, et al. ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magnetic Resonance in Medicine, 2014, 71 (3): 990–1001. doi: 10.1002/mrm.24751
|
[6] |
Lustig M, Donoho D L, Santos J M, et al. Compressed sensing MRI. IEEE Signal Processing Magazine, 2008, 25 (2): 72–82. doi: 10.1109/MSP.2007.914728
|
[7] |
Qu X, Cao X, Guo D, et al. Combined sparsifying transforms for compressed sensing MRI. Electronics Letters, 2010, 46 (2): 121–123. doi: 10.1049/el.2010.1845
|
[8] |
Haldar J P, Zhuo J W. P-LORAKS: Low-rank modeling of local k-space neighborhoods with parallel imaging data. Magnetic Resonance in Medicine, 2016, 75 (4): 1499–1514. doi: 10.1002/mrm.25717
|
[9] |
Block K T, Uecker M, Frahm J. Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint. Magnetic Resonance in Medicine, 2007, 57 (6): 1086–1098. doi: 10.1002/mrm.21236
|
[10] |
Wang S S, Su Z H, Ying L, et al. Accelerating magnetic resonance imaging via deep learning. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). Prague, Czech Republic: IEEE, 2016: 514–517.
|
[11] |
Schlemper J, Caballero J, Hajnal J V, et al. A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Transactions on Medical Imaging, 2018, 37 (2): 491–503. doi: 10.1109/TMI.2017.2760978
|
[12] |
Sun L Y, Fan Z W, Huang Y, et al. Compressed sensing MRI using a recursive dilated network. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18). New Orleans, LA: AAAI, 2018: 2444–2451.
|
[13] |
Ding P L K, Li Z Q, Zho Y X, et al. Deep residual dense U-Net for resolution enhancement in accelerated MRI acquisition. In: Proc. SPIE 10949, Medical Imaging 2019: Image Processing. SPIE, 2019 , 10949: 109490F.
|
[14] |
Dai Y X, Zhuang P X. Compressed sensing MRI via a multi-scale dilated residual convolution network. Magnetic Resonance Imaging, 2019, 63: 93–104. doi: 10.1016/j.mri.2019.07.014
|
[15] |
Yang G, Yu S M, Dong H, et al. DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Transactions on Medical Imaging, 2018, 37 (6): 1310–1321. doi: 10.1109/TMI.2017.2785879
|
[16] |
Quan T M, Nguyen-Duc T, Jeong W K. Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss. IEEE Transactions on Medical Imaging, 2018, 37 (6): 1488–1497. doi: 10.1109/TMI.2018.2820120
|
[17] |
Eo T, Jun Y, Kim T, et al. KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images. Magnetic Resonance in Medicine, 2018, 80 (5): 2188–2201. doi: 10.1002/mrm.27201
|
[18] |
Wang Z L, Jiang H T, Du H W, et al. IKWI-net: A cross-domain convolutional neural network for undersampled magnetic resonance image reconstruction. Magnetic Resonance Imaging, 2020, 73: 1–10. doi: 10.1016/j.mri.2020.06.015
|
[19] |
Zhou B, Zhou S K. DuDoRNet: learning a dual-domain recurrent network for fast MRI reconstruction with deep T1 prior. In: Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 4272–4281.
|
[20] |
Ran M S, Xia W J, Huang Y Q, et al. MD-Recon-Net: a parallel dual-domain convolutional neural network for compressed sensing MRI. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5 (1): 120–135. doi: 10.1109/TRPMS.2020.2991877
|
[21] |
Liu Y, Pang Y W, Liu X H, et al. DIIK-Net: A full-resolution cross-domain deep interaction convolutional neural network for MR image reconstruction. Neurocomputing, 2023, 517: 213–222. doi: 10.1016/j.neucom.2022.09.048
|
[22] |
Han Y, Sunwoo L, Ye J C. k-space deep learning for accelerated MRI. IEEE Transactions on Medical Imaging, 2020, 39 (2): 377–386. doi: 10.1109/TMI.2019.2927101
|
[23] |
Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells W, et al. , editors. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Cham: Springer, 2015: 234–241.
|
[24] |
Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science, 2006, 313 (5786): 504–507. doi: 10.1126/science.1127647
|
[25] |
Martínez H P, Yannakakis G N. Deep multimodal fusion: combining discrete events and continuous signals. In: ICMI ’14: Proceedings of the 16th International Conference on Multimodal Interaction. New York: ACM, 2014: 34–41.
|
[26] |
Xiang L, Chen Y, Chang W T, et al. Deep-learning-based multi-modal fusion for fast MR reconstruction. IEEE Transactions on Biomedical Engineering, 2018, 66 (7): 2105–2114. doi: 10.1109/TBME.2018.2883958
|
[27] |
Xuan K, Xiang L, Huang X Q, et al. Multimodal MRI reconstruction assisted with spatial alignment network. IEEE Transactions on Medical Imaging, 2022, 41 (9): 2499–2509. doi: 10.1109/TMI.2022.3164050
|
[28] |
Zhang Y L, Tian Y P, Kong Y, et al. Residual dense network for image super-resolution. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 2472–2481.
|
[29] |
Kim D W, Chung J R, Jung S W. GRDN: grouped residual dense network for real image denoising and GAN-based real-world noise modeling. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE Press, 2019: 2086–2094.
|
[30] |
Hu J, Shen L, Sun G. Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 7132–7141.
|
[31] |
Woo S H, Park J, Lee J Y, et al. CBAM: convolutional block attention module. In: Ferrari V, Hebert M, Sminchisescu C, et al. , editors. Computer Vision – ECCV 2018. Cham: Springer, 2018: 3–19.
|
[32] |
Qin C, Schlemper J, Caballero J, et al. Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE Transactions on Medical Imaging, 2019, 38 (1): 280–290. doi: 10.1109/TMI.2018.2863670
|
[33] |
Bakas S, Reyes M, Jakab A, et al. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv: 1811.02629, 2018 .
|
[34] |
Menze B H, Jakab A, Bauer S, et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Transactions on Medical Imaging, 2015, 34 (10): 1993–2024. doi: 10.1109/TMI.2014.2377694
|
[35] |
Zbontar J K F, Sriram A. fastMRI: an open dataset and benchmarks for accelerated MRI. arXiv: 1811.08839, 2018 .
|
[36] |
Xuan K, Sun S, Xue Z, et al. Learning MRI k-space subsampling pattern using progressive weight pruning. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. Cham: Springer, 2020: 178–187.
|
[37] |
Wang P Q, Chen P F, Yuan Y, et al. Understanding convolution for semantic segmentation. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). Piscataway: IEEE Press, 2018: 1451–1460.
|