[1] |
Bennett C H. Quantum cryptography using any two nonorthogonal states. Physical Review Letters, 1992, 68: 3121–3124. doi: 10.1103/PhysRevLett.68.3121
|
[2] |
Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography. Reviews of Modern Physics, 2002, 74: 145. doi: 10.1103/RevModPhys.74.145
|
[3] |
van Enk S J. Unambiguous state discrimination of coherent states with linear optics: Application to quantum cryptography. Physical Review A, 2002, 66: 042313. doi: 10.1103/PhysRevA.66.042313
|
[4] |
Knill E, Laflamme R, Zurek W H. Resilient quantum computation: Error models and thresholds. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1998, 454: 365–384. doi: 10.1098/rspa.1998.0166
|
[5] |
Aharonov D, Ben-Or M. Fault tolerant quantum computation with constant error. In: Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of Computing. New York: ACM, 1997 : 176–188.
|
[6] |
Bennett C H, DiVincenzo D P. Quantum information and computation. Nature, 2000, 404: 247–255. doi: 10.1038/35005001
|
[7] |
Helstrom C W. Quantum detection and estimation theory. Journal of Statistical Physics, 1969, 1: 231–252. doi: 10.1007/BF01007479
|
[8] |
Higgins B L, Booth B M, Doherty A C, et al. Mixed state discrimination using optimal control. Physical Review Letters, 2009, 103: 220503. doi: 10.1103/PhysRevLett.103.220503
|
[9] |
Calsamiglia J, de Vicente J I, Muñoz-Tapia R, et al. Local discrimination of mixed states. Physical Review Letters, 2010, 105: 080504. doi: 10.1103/PhysRevLett.105.080504
|
[10] |
Higgins B L, Doherty A C, Bartlett S D, et al. Multiple-copy state discrimination: Thinking globally, acting locally. Physical Review A, 2011, 83: 052314. doi: 10.1103/PhysRevA.83.052314
|
[11] |
Wiseman H M, Milburn G J. Quantum Measurement and Control. Cambridge, UK: Cambridge University Press, 2009 .
|
[12] |
Acín A, Bagan E, Baig M, et al. Multiple-copy two-state discrimination with individual measurements. Physical Review A, 2005, 71: 032338. doi: 10.1103/PhysRevA.71.032338
|
[13] |
Brody D, Meister B. Minimum decision cost for quantum ensembles. Physical Review Letters, 1996, 76: 1–5. doi: 10.1103/PhysRevLett.76.1
|
[14] |
Slussarenko S, Weston M M, Li J G, et al. Quantum state discrimination using the minimum average number of copies. Physical Review Letters, 2017, 118: 030502. doi: 10.1103/PhysRevLett.118.030502
|
[15] |
Martínez Vargas E, Hirche C, Sentís G, et al. Quantum sequential hypothesis testing. Physical Review Letters, 2021, 126: 180502. doi: 10.1103/PhysRevLett.126.180502
|
[16] |
Li Y, Tan V Y F, Tomamichel M. Optimal adaptive strategies for sequential quantum hypothesis testing. Communications in Mathematical Physics, 2022, 392: 993–1027. doi: 10.1007/s00220-022-04362-5
|
[17] |
Renes J M, Blume-Kohout R, Scott A J, et al. Symmetric informationally complete quantum measurements. Journal of Mathematical Physics, 2004, 45: 2171–2180. doi: 10.1063/1.1737053
|
[18] |
Conlon L O, Eilenberger F, Lam P K, et al. Discriminating mixed qubit states with collective measurements. Communication Physics, 2023, 6: 337. doi: 10.1038/s42005-023-01454-z
|
[19] |
Peres A, Wootters W K. Optimal detection of quantum information. Physical Review Letters, 1991, 66: 1119–1122. doi: 10.1103/PhysRevLett.66.1119
|
[20] |
Xu F, Zhang X M, Xu L, et al. Experimental quantum target detection approaching the fundamental Helstrom limit. Physical Review Letters, 2021, 127: 040504. doi: 10.1103/PhysRevLett.127.040504
|
[21] |
Cook R L, Martin P J, Geremia J M. Optical coherent state discrimination using a closed-loop quantum measurement. Nature, 2007, 446: 774–777. doi: 10.1038/nature05655
|
[22] |
Tian B, Yan W, Hou Z, et al. Minimum-consumption discrimination of quantum states via globally optimal adaptive measurements. Physical Review Letters, 2024, 132: 110801. doi: 10.1103/PhysRevLett.132.110801
|
[1] |
Bennett C H. Quantum cryptography using any two nonorthogonal states. Physical Review Letters, 1992, 68: 3121–3124. doi: 10.1103/PhysRevLett.68.3121
|
[2] |
Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography. Reviews of Modern Physics, 2002, 74: 145. doi: 10.1103/RevModPhys.74.145
|
[3] |
van Enk S J. Unambiguous state discrimination of coherent states with linear optics: Application to quantum cryptography. Physical Review A, 2002, 66: 042313. doi: 10.1103/PhysRevA.66.042313
|
[4] |
Knill E, Laflamme R, Zurek W H. Resilient quantum computation: Error models and thresholds. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1998, 454: 365–384. doi: 10.1098/rspa.1998.0166
|
[5] |
Aharonov D, Ben-Or M. Fault tolerant quantum computation with constant error. In: Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of Computing. New York: ACM, 1997 : 176–188.
|
[6] |
Bennett C H, DiVincenzo D P. Quantum information and computation. Nature, 2000, 404: 247–255. doi: 10.1038/35005001
|
[7] |
Helstrom C W. Quantum detection and estimation theory. Journal of Statistical Physics, 1969, 1: 231–252. doi: 10.1007/BF01007479
|
[8] |
Higgins B L, Booth B M, Doherty A C, et al. Mixed state discrimination using optimal control. Physical Review Letters, 2009, 103: 220503. doi: 10.1103/PhysRevLett.103.220503
|
[9] |
Calsamiglia J, de Vicente J I, Muñoz-Tapia R, et al. Local discrimination of mixed states. Physical Review Letters, 2010, 105: 080504. doi: 10.1103/PhysRevLett.105.080504
|
[10] |
Higgins B L, Doherty A C, Bartlett S D, et al. Multiple-copy state discrimination: Thinking globally, acting locally. Physical Review A, 2011, 83: 052314. doi: 10.1103/PhysRevA.83.052314
|
[11] |
Wiseman H M, Milburn G J. Quantum Measurement and Control. Cambridge, UK: Cambridge University Press, 2009 .
|
[12] |
Acín A, Bagan E, Baig M, et al. Multiple-copy two-state discrimination with individual measurements. Physical Review A, 2005, 71: 032338. doi: 10.1103/PhysRevA.71.032338
|
[13] |
Brody D, Meister B. Minimum decision cost for quantum ensembles. Physical Review Letters, 1996, 76: 1–5. doi: 10.1103/PhysRevLett.76.1
|
[14] |
Slussarenko S, Weston M M, Li J G, et al. Quantum state discrimination using the minimum average number of copies. Physical Review Letters, 2017, 118: 030502. doi: 10.1103/PhysRevLett.118.030502
|
[15] |
Martínez Vargas E, Hirche C, Sentís G, et al. Quantum sequential hypothesis testing. Physical Review Letters, 2021, 126: 180502. doi: 10.1103/PhysRevLett.126.180502
|
[16] |
Li Y, Tan V Y F, Tomamichel M. Optimal adaptive strategies for sequential quantum hypothesis testing. Communications in Mathematical Physics, 2022, 392: 993–1027. doi: 10.1007/s00220-022-04362-5
|
[17] |
Renes J M, Blume-Kohout R, Scott A J, et al. Symmetric informationally complete quantum measurements. Journal of Mathematical Physics, 2004, 45: 2171–2180. doi: 10.1063/1.1737053
|
[18] |
Conlon L O, Eilenberger F, Lam P K, et al. Discriminating mixed qubit states with collective measurements. Communication Physics, 2023, 6: 337. doi: 10.1038/s42005-023-01454-z
|
[19] |
Peres A, Wootters W K. Optimal detection of quantum information. Physical Review Letters, 1991, 66: 1119–1122. doi: 10.1103/PhysRevLett.66.1119
|
[20] |
Xu F, Zhang X M, Xu L, et al. Experimental quantum target detection approaching the fundamental Helstrom limit. Physical Review Letters, 2021, 127: 040504. doi: 10.1103/PhysRevLett.127.040504
|
[21] |
Cook R L, Martin P J, Geremia J M. Optical coherent state discrimination using a closed-loop quantum measurement. Nature, 2007, 446: 774–777. doi: 10.1038/nature05655
|
[22] |
Tian B, Yan W, Hou Z, et al. Minimum-consumption discrimination of quantum states via globally optimal adaptive measurements. Physical Review Letters, 2024, 132: 110801. doi: 10.1103/PhysRevLett.132.110801
|