ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Chemistry 05 July 2023

Mechanism of nickel-catalyzed hydroalkylation of branched 1,3-dienes

Cite this:
https://doi.org/10.52396/JUSTC-2023-0031
More Information
  • Author Bio:

    Mingqiang Liu is a master’s student under the supervision of Prof. Yao Fu at the University of Science and Technology of China. His research mainly focuses on DFT calculations of the reaction mechanism

    Haizhu Yu received her Ph.D. degree from the University of Science and Technology of China. She is currently a Professor at Anhui University. Her research focuses on reaction mechanism simulation, structure-activity relationships, and anticancer metal nanoclusters

    Yao Fu received his Ph.D. degree from the University of Science and Technology of China in 2005. He is currently a Professor at the University of Science and Technology of China. His research focuses on physical organic chemistry, green organic synthesis, and the biomass chemical industry

  • Corresponding author: E-mail: yuhaizhu@ahu.edu.cn; E-mail: fuyao@ustc.edu.cn
  • Received Date: 05 March 2023
  • Accepted Date: 23 May 2023
  • Available Online: 05 July 2023
  • With the development of algorithms and theoretical chemistry, quantum chemical calculations have been used to explain and predict various chemical experiments. The hydroalkylation of conjugated olefins catalyzed by nickel is an important type of organic chemical reaction, and its mechanism has always been the focus of organic chemists. In this paper, a hydroalkylation reaction developed by the Mazet research group was studied in detail by means of density functional theory (DFT), and a possible mechanism model of the reaction was obtained. In this context, the attractive regioselectivity of the reaction was explored and rationally explained.
    Origin of regioselectivity in nickel-catalyzed hydroalkylation of branched 1, 3-dienes.
    With the development of algorithms and theoretical chemistry, quantum chemical calculations have been used to explain and predict various chemical experiments. The hydroalkylation of conjugated olefins catalyzed by nickel is an important type of organic chemical reaction, and its mechanism has always been the focus of organic chemists. In this paper, a hydroalkylation reaction developed by the Mazet research group was studied in detail by means of density functional theory (DFT), and a possible mechanism model of the reaction was obtained. In this context, the attractive regioselectivity of the reaction was explored and rationally explained.
    • The mechanism of Ni-catalyzed hydroalkylation of branched 1,3-dienes was systematically explored with the aid of DFT.
    • Reaction mechanism consists of four main steps: proton transfer, anion dissociation, carbanion attack and ligand exchange.
    • The selectivity of the reaction was analyzed, which is mainly due to the electronic and steric effects.

  • loading
  • [1]
    Volla C M R, Atodiresei I, Rueping M. Catalytic C–C bond-forming multi-component cascade or domino reactions: Pushing the boundaries of complexity in asymmetric organocatalysis. Chem. Rev., 2014, 114: 2390–2431. doi: 10.1021/cr400215u
    [2]
    Jacobsen E N, Pfaltz A, Yamamoto H. Comprehensive Asymmetric Catalysis. Berlin: Springer-Verlag, 1999.
    [3]
    Adamson N J, Malcolmson S J. Catalytic enantio- and regioselective addition of nucleophiles in the intermolecular hydrofunctionalization of 1,3-dienes. ACS Catal., 2020, 10: 1060–1076. doi: 10.1021/acscatal.9b04712
    [4]
    Hartwig J F. Carbon-heteroatom bond formation catalysed by organometallic complexes. Nature, 2008, 455: 314–322. doi: 10.1038/nature07369
    [5]
    Zeng X M. Recent advances in catalytic sequential reactions involving hydroelement addition to carbon-carbon multiple bonds. Chem. Rev., 2013, 113: 6864–6900. doi: 10.1021/cr400082n
    [6]
    Dong Z, Ren Z, Thompson S J, et al. Transition-metal-catalyzed C–H alkylation using alkenes. Chem. Rev., 2017, 117: 9333–9403. doi: 10.1021/acs.chemrev.6b00574
    [7]
    Leitner A, Larsen J, Steffens C, et al. Palladium-catalyzed addition of mono- and dicarbonyl compounds to conjugated dienes. J. Org. Chem., 2004, 69: 7552–7557. doi: 10.1021/jo0490999
    [8]
    Yang H J, Xing D. Palladium-catalyzed diastereo- and enantioselective allylic alkylation of oxazolones with 1,3-dienes under base-free conditions. Chem. Commun., 2020, 56: 3721–3724. doi: 10.1039/D0CC00265H
    [9]
    Liao L Y, Sigman M S. Palladium-catalyzed hydroarylation of 1,3-dienes with boronic esters via reductive formation of π-allyl palladium intermediates under oxidative conditions. J. Am. Chem. Soc., 2010, 132 (30): 10209–10211. doi: 10.1021/ja105010t
    [10]
    Zhang Z P, Xiao F, Wu H M, et al. Pd-catalyzed asymmetric hydroalkylation of 1,3-dienes: Access to unnatural α-amino acid derivatives containing vicinal quaternary and tertiary stereogenic centers. Org. Lett., 2020, 22 (2): 569–574. doi: 10.1021/acs.orglett.9b04341
    [11]
    Tran G, Mazet C. Ni-catalyzed regioselective hydroalkoxylation of branched 1,3-dienes. Org. Lett., 2019, 21 (22): 9124–9127. doi: 10.1021/acs.orglett.9b03511
    [12]
    Shirakawa E, Takahashi G, Tsuchimoto T, et al. Nickel-catalysed addition of organoboronates to 1,3-dienes. Chem. Commun., 2002: 2210–2211. doi: 10.1039/B207185A
    [13]
    Lv L Y, Yu L, Qiu Z H, et al. Switch in selectivity for formal hydroalkylation of 1,3-dienes and enynes with simple hydrazones. Angew. Chem. Int. Ed., 2020, 59: 6466–6472. doi: 10.1002/anie.201915875
    [14]
    Wang S, Xiang Y F, Chen T T, et al. Construction of quaternary carbon centers by KOtBu-catalyzed α-homoallylic alkylation of lactams with 1,3-dienes. Org. Chem. Front., 2022, 9: 1642–1648. doi: 10.1039/d1qo01927a
    [15]
    Flaget A, Zhang C, Mazet C. Ni-catalyzed enantioselective hydrofunctionalizations of 1,3-dienes. ACS. Catal., 2022, 12 (24): 15638–15647. doi: 10.1021/acscatal.2c05251
    [16]
    Goldfogel M J, Meek S J. Diastereoselective synthesis of vicinal tertiary and N-substituted quaternary stereogenic centers by catalytic hydroalkylation of dienes. Chem. Sci., 2016, 7: 4079–4084. doi: 10.1039/C5SC04908C
    [17]
    Pang X B, Zhao Z Z, Wei X X, et al. Regiocontrolled reductive vinylation of aliphatic 1,3-dienes with vinyl triflates by nickel catalysis. J. Am. Chem. Soc., 2021, 143 (12): 4536–4542. doi: 10.1021/jacs.1c00142
    [18]
    Goldfogel M J, Roberts C C, Manan R S, et al. Diastereoselective synthesis of γ-substituted 2-butenolides via (CDC)-Rh-catalyzed intermolecular hydroalkylation of dienes with silyloxyfurans. Org. Lett., 2017, 19 (1): 90–93. doi: 10.1021/acs.orglett.6b03369
    [19]
    Onyeagusi C I, Shao X X, Malcolmson S J. Enantio- and diastereoselective synthesis of homoallylic α-trifluoromethyl amines by catalytic hydroalkylation of dienes. Org. Lett., 2020, 22 (4): 1681–1685. doi: 10.1021/acs.orglett.0c00342
    [20]
    Yan X B, Li L, Wu W Q, et al. Ni-catalyzed hydroalkylation of olefins with N-sulfonyl amines. Nat. Commun., 2021, 12: 5881. doi: 10.1038/s41467-021-26194-y
    [21]
    Cheng L, Li M M, Xiao L J, et al. Nickel(0)-catalyzed hydroalkylation of 1,3-dienes with simple ketones. J. Am. Chem. Soc., 2018, 140 (37): 11627–11630. doi: 10.1021/jacs.8b09346
    [22]
    Adamson N J, Wilbur K C E, Malcolmson S J. Enantioselective intermolecular Pd-catalyzed hydroalkylation of acyclic 1,3-dienes with activated pronucleophiles. J. Am. Chem. Soc., 2018, 140 (8): 2761–2764. doi: 10.1021/jacs.7b13300
    [23]
    Park S, Adamson N J, Malcolmson S J. Brønsted acid and Pd-PHOX dual-catalysed enantioselective addition of activated C-pronucleophiles to internal dienes. Chem. Sci., 2019, 10: 5176–5182. doi: 10.1039/C9SC00633H
    [24]
    Adamson N J, Park S, Zhou P, et al. Enantioselective construction of quaternary stereogenic centers by the addition of an acyl anion equivalent to 1,3-dienes. Org. Lett., 2020, 22: 2032–2037. doi: 10.1021/acs.orglett.0c00412
    [25]
    Zhang Q L, Yu H M, Shen L L, et al. Stereodivergent coupling of 1,3-dienes with aldimine esters enabled by synergistic Pd and Cu catalysis. J. Am. Chem. Soc., 2019, 141 (37): 14554–14559. doi: 10.1021/jacs.9b07600
    [26]
    Shao W, Besnard C, Guénée L, et al. Ni-catalyzed regiodivergent and stereoselective hydroalkylation of acyclic branched dienes with unstabilized C(sp3) nucleophiles. J. Am. Chem. Soc., 2020, 142 (38): 16486–16492. doi: 10.1021/jacs.0c08319
    [27]
    Xia J Z, Hirai T, Katayama S, et al. Mechanistic study of Ni and Cu dual catalyst for asymmetric C–C bond formation; asymmetric coupling of 1,3-dienes with C-nucleophiles to construct vicinal stereocenters. ACS Catal., 2021, 11 (11): 6643–6655. doi: 10.1021/acscatal.1c01626
    [28]
    Wang H F, Zhang R Y, Zhang Q L, et al. Synergistic Pd/amine-catalyzed stereodivergent hydroalkylation of 1,3-dienes with aldehydes: Reaction development, mechanism, and stereochemical origins. J. Am. Chem. Soc., 2021, 143 (29): 10948–10962. doi: 10.1021/jacs.1c02220
    [29]
    Li B, Xu H, Dang Y F, et al. Dispersion and steric effects on enantio-/diastereoselectivities in synergistic dual transition-metal catalysis. J. Am. Chem. Soc., 2022, 144 (4): 1971–1985. doi: 10.1021/jacs.1c12664
    [30]
    Zhang Q L, Dong D F, Zi W W. Palladium-catalyzed regio- and enantioselective hydrosulfonylation of 1,3-dienes with sulfinic acids: Scope, mechanism, and origin of selectivity. J. Am. Chem. Soc., 2020, 142 (37): 15860–15869. doi: 10.1021/jacs.0c05976
    [31]
    Trost B M. When is a proton not a proton? Chem. Eur. J., 1998, 4: 2405–2412. doi: 10.1002/(SICI)1521-3765(19981204)4:12<2405::AID-CHEM2405>3.0.CO;2-0
    [32]
    Yu H M, Zhang Q L, Zi W W. Synergistic Pd/Cu-catalyzed enantioselective Csp2–F bond alkylation of fluoro-1,3-dienes with aldimine esters. Nat. Commun., 2022, 13: 2470. doi: 10.1038/s41467-022-30152-7
    [33]
    Gao A Z, Chen S M. Mechanism and selectivities in Ru-catalyzed anti-Markovnikov formal hydroalkylation of 1,3-dienes and enynes: A computational study. J. Org. Chem., 2021, 86 (17): 11895–11904. doi: 10.1021/acs.joc.1c01319
    [34]
    Cheng L, Li M M, Li M L, et al. Nickel-catalyzed regio- and enantioselective hydroarylation of 1,3-dienes with indoles. CCS Chem., 2022, 4: 2612–2619. doi: 10.31635/ccschem.021.202101472
    [35]
    Mifleur A, Mérel D S, Mortreux A, et al. Deciphering the mechanism of the nickel-catalyzed hydroalkoxylation reaction: A combined experimental and computational study. ACS Catal., 2017, 7: 6915–6923. doi: 10.1021/acscatal.7b00616
    [36]
    Crabtree R H. The Organometallic Chemistry of the Transition Metals. 3rd ed. New York: John Wiley & Sons, Inc., 2000: 125–128.
    [37]
    Wang Y C, Xiao Z X, Wang M, et al. Umpolung asymmetric 1,5-conjugate addition via palladium hydride catalysis. Angew. Chem. Int. Ed., 2023, 62: e202215568. doi: 10.1002/anie.202215568
    [38]
    Han J Q, Liu R X, Lin Z T, et al. Stereodivergent construction of Csp3–Csp3 bonds bearing vicinal stereocenters by synergistic palladium and phase-transfer catalysis. Angew. Chem. Int. Ed., 2023, 62: e202215714. doi: 10.1002/anie.202215714
    [39]
    Wang C D, Guo Y J, Wang X M, et al. Ni-catalyzed regioselective hydroarylation of 1-aryl-1, 3-butadienes with aryl halides. Chem. Eur. J., 2021, 27: 15903–15907. doi: 10.1002/chem.202102847
    [40]
    Lv L Y, Zhu D H, Qiu Z H, et al. Nickel-catalyzed regioselective hydrobenzylation of 1,3-dienes with hydrazones. ACS Catal., 2019, 9 (10): 9199–9205. doi: 10.1021/acscatal.9b02483
    [41]
    Iwasaki T, Shimizu R, Imanishi R, et al. Copper-catalyzed regioselective hydroalkylation of 1,3-dienes with alkyl fluorides and Grignard reagents. Angew. Chem. Int. Ed., 2015, 54: 9347–9350. doi: 10.1002/anie.201503288
    [42]
    Zhang Q L, Zhu M H, Zi W W. Synergizing palladium with Lewis base catalysis for stereodivergent coupling of 1,3-dienes with pentafluorophenyl acetates. Chem, 2022, 8: 2784–2796. doi: 10.1016/j.chempr.2022.07.014
    [43]
    Yang S Q, Han A J, Liu Y, et al. Catalytic asymmetric hydroalkoxylation and formal hydration and hydroaminoxylation of conjugated dienes. J. Am. Chem. Soc., 2023, 145 (7): 3915–3925. doi: 10.1021/jacs.2c11843
    [44]
    Li Q, Wang Z, Dong V M, et al. Enantioselective hydroalkoxylation of 1,3-dienes via Ni-catalysis. J. Am. Chem. Soc., 2023, 145 (7): 3909–3914. doi: 10.1021/jacs.2c12779
    [45]
    Zhang W S, Ji D W, Li Y, et al. Regio- and stereoselective diarylation of 1,3-dienes via Ni/Cr cocatalysis. ACS Catal., 2022, 12 (4): 2158–2165. doi: 10.1021/acscatal.1c05441
    [46]
    Tsuji H, Takahashi Y, Kawatsura M. Nickel-catalyzed hydroalkylation of 1,3-dienes with malonates using a homoallyl carbonate as the 1, 3-diene and hydride source. Tetrahedron Lett., 2021, 68: 152916. doi: 10.1016/j.tetlet.2021.152916
    [47]
    Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 16, Revision C.01. Wallingford, CT: Gaussian, Inc., 2016.
    [48]
    Vosko S H, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys., 1980, 58: 1200–1211. doi: 10.1139/p80-159
    [49]
    Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 1988, 37: 785–789. doi: 10.1103/physrevb.37.785
    [50]
    Becke A D. Density-functional thermochemistry. Ⅲ. The role of exact exchange. J. Chem. Phys., 1993, 98: 5648–5652. doi: 10.1063/1.464913
    [51]
    Stephens P J, Devlin F J, Chabalowski C F, et al. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem., 1994, 98: 11623–11627. doi: 10.1021/j100096a001
    [52]
    Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 2010, 132: 154104. doi: 10.1063/1.3382344
    [53]
    Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem., 2011, 32: 1456–1465. doi: 10.1002/jcc.21759
    [54]
    Zhao Y, Truhlar D G. Density functionals with broad applicability in chemistry. Acc. Chem. Res., 2008, 41: 157–167. doi: 10.1021/ar700111a
    [55]
    Zhao Y, Truhlar D G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc., 2008, 120: 215–241. doi: 10.1007/s00214-007-0310-x
    [56]
    Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys., 2005, 7: 3297–3305. doi: 10.1039/b508541a
    [57]
    Weigend F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys., 2006, 8: 1057–1065. doi: 10.1039/b515623h
    [58]
    Marenich A V, Cramer C J, Truhlar D G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B, 2009, 113: 6378–6396. doi: 10.1021/jp810292n
    [59]
    Fukui K. Formulation of the reaction coordinate. J. Phys. Chem., 1970, 74: 4161–4163. doi: 10.1021/j100717a029
    [60]
    Fukui K. The path of chemical reactions–The IRC approach. Acc. Chem. Res., 1981, 14: 363–368. doi: 10.1021/ar00072a001
    [61]
    Martin R L, Hay P J, Pratt L R. Hydrolysis of ferric ion in water and conformational equilibrium. J. Phys. Chem. A, 1998, 102: 3565–3573. doi: 10.1021/jp980229p
    [62]
    Gusev D G. Assessing the accuracy of M06-L organometallic thermochemistry. Organometallics, 2013, 32: 4239–4243. doi: 10.1021/om400412p
    [63]
    Hopmann K H. How accurate is DFT for iridium-mediated chemistry? Organometallics, 2016, 35: 3795–3807. doi: 10.1021/acs.organomet.6b00377
    [64]
    Besora M, Vidossich P, Lledós A, et al. Calculation of reaction free energies in solution: A comparison of current approaches. J. Phys. Chem. A, 2018, 122: 1392–1399. doi: 10.1021/acs.jpca.7b11580
    [65]
    Legault C Y. CYLview, 1.0b. Université de Sherbrooke, 2009. http://www.cylview.org.
    [66]
    Long J, Ding C, Yin G Y. Nickel/Brønsted acid dual-catalyzed regioselective C–H bond allylation of phenols with 1,3-dienes. Org. Chem. Front., 2022, 9: 3834–3839. doi: 10.1039/D2QO00637E
    [67]
    Xiao L J, Cheng L, Feng W M, et al. Nickel(0)-catalyzed hydroarylation of styrenes and 1,3-dienes with organoboron compounds. Angew. Chem., Int. Ed., 2018, 57: 461–464. doi: 10.1002/anie.201710735
    [68]
    Chen T T, Yang H J, Yang Y, et al. Water-accelerated nickel-catalyzed α-crotylation of simple ketones with 1, 3-butadiene under pH and redox-neutral conditions. ACS Catal., 2020, 10 (7): 4238–4243. doi: 10.1021/acscatal.0c00019
    [69]
    Wu K Q, Li H, Zhou A, et al. Palladium-catalyzed chemo- and regioselective C–H bond functionalization of phenols with 1, 3-dienes. J. Org. Chem., 2023, 88 (4): 2599–2604. doi: 10.1021/acs.joc.2c02697
    [70]
    Cheng L, Li M M, Wang B, et al. Nickel-catalyzed hydroalkylation and hydroalkenylation of 1,3-dienes with hydrazones. Chem. Sci., 2019, 10: 10417–10421. doi: 10.1039/c9sc04177j
    [71]
    Asgari P, Hua Y, Bokka A, et al. Catalytic hydrogen atom transfer from hydrosilanes to vinylarenes for hydrosilylation and polymerization. Nat. Catal., 2019, 2: 164–173. doi: 10.1038/s41929-018-0217-z
    [72]
    Guo Y, Li S H. Unusual concerted Lewis acid–Lewis base mechanism for hydrogen activation by a phosphine-borane compound. Inorg. Chem., 2008, 47 (14): 6212–6219. doi: 10.1021/ic702489s
    [73]
    Liu L, Lukose B, Ensing B. Hydrogen activation by frustrated Lewis pairs revisited by metadynamics simulations. J. Phys. Chem., C, 2017, 121 (4): 2046–2051. doi: 10.1021/acs.jpcc.6b09991
  • 加载中

Catalog

    Figure  1.  Examples of the typical hydroalkylation strategies of diene.

    Figure  2.  Possible reaction mechanism of the Ni-catalyzed hydroalkylation of 2-phenyl-1,3-diene.

    Figure  3.  Model reaction in the theoretical calculations.

    Figure  4.  The Gibbs free energy profiles of the hydrogenation step start from IN1.

    Figure  5.  The Gibbs free energy profiles for the C–C bond formation steps from IN3.

    Figure  6.  The Gibbs free energy profile of the most feasible hydroalkylation of the 2-phenyl-1,3-diene with the amide reagent.

    Figure  7.  Energy profile of the main transformations in the most feasible hydroalkylation pathway of the imide system.

    Figure  8.  The Lewis structure, relative Gibbs free energy (ΔG° in kcal/mol), and optimized geometry of IN2 and IN2-a.

    Figure  9.  (a, b) Illustrative diagram for the configuration of the C1- and C3-alkylation transition states. The nickel on the other side is omitted for ease of observation. (c) The relative Gibbs free energy (ΔG° in kcal/mol), the NBO charge of the carbonyl group and the optimized geometry of , , , and .

    [1]
    Volla C M R, Atodiresei I, Rueping M. Catalytic C–C bond-forming multi-component cascade or domino reactions: Pushing the boundaries of complexity in asymmetric organocatalysis. Chem. Rev., 2014, 114: 2390–2431. doi: 10.1021/cr400215u
    [2]
    Jacobsen E N, Pfaltz A, Yamamoto H. Comprehensive Asymmetric Catalysis. Berlin: Springer-Verlag, 1999.
    [3]
    Adamson N J, Malcolmson S J. Catalytic enantio- and regioselective addition of nucleophiles in the intermolecular hydrofunctionalization of 1,3-dienes. ACS Catal., 2020, 10: 1060–1076. doi: 10.1021/acscatal.9b04712
    [4]
    Hartwig J F. Carbon-heteroatom bond formation catalysed by organometallic complexes. Nature, 2008, 455: 314–322. doi: 10.1038/nature07369
    [5]
    Zeng X M. Recent advances in catalytic sequential reactions involving hydroelement addition to carbon-carbon multiple bonds. Chem. Rev., 2013, 113: 6864–6900. doi: 10.1021/cr400082n
    [6]
    Dong Z, Ren Z, Thompson S J, et al. Transition-metal-catalyzed C–H alkylation using alkenes. Chem. Rev., 2017, 117: 9333–9403. doi: 10.1021/acs.chemrev.6b00574
    [7]
    Leitner A, Larsen J, Steffens C, et al. Palladium-catalyzed addition of mono- and dicarbonyl compounds to conjugated dienes. J. Org. Chem., 2004, 69: 7552–7557. doi: 10.1021/jo0490999
    [8]
    Yang H J, Xing D. Palladium-catalyzed diastereo- and enantioselective allylic alkylation of oxazolones with 1,3-dienes under base-free conditions. Chem. Commun., 2020, 56: 3721–3724. doi: 10.1039/D0CC00265H
    [9]
    Liao L Y, Sigman M S. Palladium-catalyzed hydroarylation of 1,3-dienes with boronic esters via reductive formation of π-allyl palladium intermediates under oxidative conditions. J. Am. Chem. Soc., 2010, 132 (30): 10209–10211. doi: 10.1021/ja105010t
    [10]
    Zhang Z P, Xiao F, Wu H M, et al. Pd-catalyzed asymmetric hydroalkylation of 1,3-dienes: Access to unnatural α-amino acid derivatives containing vicinal quaternary and tertiary stereogenic centers. Org. Lett., 2020, 22 (2): 569–574. doi: 10.1021/acs.orglett.9b04341
    [11]
    Tran G, Mazet C. Ni-catalyzed regioselective hydroalkoxylation of branched 1,3-dienes. Org. Lett., 2019, 21 (22): 9124–9127. doi: 10.1021/acs.orglett.9b03511
    [12]
    Shirakawa E, Takahashi G, Tsuchimoto T, et al. Nickel-catalysed addition of organoboronates to 1,3-dienes. Chem. Commun., 2002: 2210–2211. doi: 10.1039/B207185A
    [13]
    Lv L Y, Yu L, Qiu Z H, et al. Switch in selectivity for formal hydroalkylation of 1,3-dienes and enynes with simple hydrazones. Angew. Chem. Int. Ed., 2020, 59: 6466–6472. doi: 10.1002/anie.201915875
    [14]
    Wang S, Xiang Y F, Chen T T, et al. Construction of quaternary carbon centers by KOtBu-catalyzed α-homoallylic alkylation of lactams with 1,3-dienes. Org. Chem. Front., 2022, 9: 1642–1648. doi: 10.1039/d1qo01927a
    [15]
    Flaget A, Zhang C, Mazet C. Ni-catalyzed enantioselective hydrofunctionalizations of 1,3-dienes. ACS. Catal., 2022, 12 (24): 15638–15647. doi: 10.1021/acscatal.2c05251
    [16]
    Goldfogel M J, Meek S J. Diastereoselective synthesis of vicinal tertiary and N-substituted quaternary stereogenic centers by catalytic hydroalkylation of dienes. Chem. Sci., 2016, 7: 4079–4084. doi: 10.1039/C5SC04908C
    [17]
    Pang X B, Zhao Z Z, Wei X X, et al. Regiocontrolled reductive vinylation of aliphatic 1,3-dienes with vinyl triflates by nickel catalysis. J. Am. Chem. Soc., 2021, 143 (12): 4536–4542. doi: 10.1021/jacs.1c00142
    [18]
    Goldfogel M J, Roberts C C, Manan R S, et al. Diastereoselective synthesis of γ-substituted 2-butenolides via (CDC)-Rh-catalyzed intermolecular hydroalkylation of dienes with silyloxyfurans. Org. Lett., 2017, 19 (1): 90–93. doi: 10.1021/acs.orglett.6b03369
    [19]
    Onyeagusi C I, Shao X X, Malcolmson S J. Enantio- and diastereoselective synthesis of homoallylic α-trifluoromethyl amines by catalytic hydroalkylation of dienes. Org. Lett., 2020, 22 (4): 1681–1685. doi: 10.1021/acs.orglett.0c00342
    [20]
    Yan X B, Li L, Wu W Q, et al. Ni-catalyzed hydroalkylation of olefins with N-sulfonyl amines. Nat. Commun., 2021, 12: 5881. doi: 10.1038/s41467-021-26194-y
    [21]
    Cheng L, Li M M, Xiao L J, et al. Nickel(0)-catalyzed hydroalkylation of 1,3-dienes with simple ketones. J. Am. Chem. Soc., 2018, 140 (37): 11627–11630. doi: 10.1021/jacs.8b09346
    [22]
    Adamson N J, Wilbur K C E, Malcolmson S J. Enantioselective intermolecular Pd-catalyzed hydroalkylation of acyclic 1,3-dienes with activated pronucleophiles. J. Am. Chem. Soc., 2018, 140 (8): 2761–2764. doi: 10.1021/jacs.7b13300
    [23]
    Park S, Adamson N J, Malcolmson S J. Brønsted acid and Pd-PHOX dual-catalysed enantioselective addition of activated C-pronucleophiles to internal dienes. Chem. Sci., 2019, 10: 5176–5182. doi: 10.1039/C9SC00633H
    [24]
    Adamson N J, Park S, Zhou P, et al. Enantioselective construction of quaternary stereogenic centers by the addition of an acyl anion equivalent to 1,3-dienes. Org. Lett., 2020, 22: 2032–2037. doi: 10.1021/acs.orglett.0c00412
    [25]
    Zhang Q L, Yu H M, Shen L L, et al. Stereodivergent coupling of 1,3-dienes with aldimine esters enabled by synergistic Pd and Cu catalysis. J. Am. Chem. Soc., 2019, 141 (37): 14554–14559. doi: 10.1021/jacs.9b07600
    [26]
    Shao W, Besnard C, Guénée L, et al. Ni-catalyzed regiodivergent and stereoselective hydroalkylation of acyclic branched dienes with unstabilized C(sp3) nucleophiles. J. Am. Chem. Soc., 2020, 142 (38): 16486–16492. doi: 10.1021/jacs.0c08319
    [27]
    Xia J Z, Hirai T, Katayama S, et al. Mechanistic study of Ni and Cu dual catalyst for asymmetric C–C bond formation; asymmetric coupling of 1,3-dienes with C-nucleophiles to construct vicinal stereocenters. ACS Catal., 2021, 11 (11): 6643–6655. doi: 10.1021/acscatal.1c01626
    [28]
    Wang H F, Zhang R Y, Zhang Q L, et al. Synergistic Pd/amine-catalyzed stereodivergent hydroalkylation of 1,3-dienes with aldehydes: Reaction development, mechanism, and stereochemical origins. J. Am. Chem. Soc., 2021, 143 (29): 10948–10962. doi: 10.1021/jacs.1c02220
    [29]
    Li B, Xu H, Dang Y F, et al. Dispersion and steric effects on enantio-/diastereoselectivities in synergistic dual transition-metal catalysis. J. Am. Chem. Soc., 2022, 144 (4): 1971–1985. doi: 10.1021/jacs.1c12664
    [30]
    Zhang Q L, Dong D F, Zi W W. Palladium-catalyzed regio- and enantioselective hydrosulfonylation of 1,3-dienes with sulfinic acids: Scope, mechanism, and origin of selectivity. J. Am. Chem. Soc., 2020, 142 (37): 15860–15869. doi: 10.1021/jacs.0c05976
    [31]
    Trost B M. When is a proton not a proton? Chem. Eur. J., 1998, 4: 2405–2412. doi: 10.1002/(SICI)1521-3765(19981204)4:12<2405::AID-CHEM2405>3.0.CO;2-0
    [32]
    Yu H M, Zhang Q L, Zi W W. Synergistic Pd/Cu-catalyzed enantioselective Csp2–F bond alkylation of fluoro-1,3-dienes with aldimine esters. Nat. Commun., 2022, 13: 2470. doi: 10.1038/s41467-022-30152-7
    [33]
    Gao A Z, Chen S M. Mechanism and selectivities in Ru-catalyzed anti-Markovnikov formal hydroalkylation of 1,3-dienes and enynes: A computational study. J. Org. Chem., 2021, 86 (17): 11895–11904. doi: 10.1021/acs.joc.1c01319
    [34]
    Cheng L, Li M M, Li M L, et al. Nickel-catalyzed regio- and enantioselective hydroarylation of 1,3-dienes with indoles. CCS Chem., 2022, 4: 2612–2619. doi: 10.31635/ccschem.021.202101472
    [35]
    Mifleur A, Mérel D S, Mortreux A, et al. Deciphering the mechanism of the nickel-catalyzed hydroalkoxylation reaction: A combined experimental and computational study. ACS Catal., 2017, 7: 6915–6923. doi: 10.1021/acscatal.7b00616
    [36]
    Crabtree R H. The Organometallic Chemistry of the Transition Metals. 3rd ed. New York: John Wiley & Sons, Inc., 2000: 125–128.
    [37]
    Wang Y C, Xiao Z X, Wang M, et al. Umpolung asymmetric 1,5-conjugate addition via palladium hydride catalysis. Angew. Chem. Int. Ed., 2023, 62: e202215568. doi: 10.1002/anie.202215568
    [38]
    Han J Q, Liu R X, Lin Z T, et al. Stereodivergent construction of Csp3–Csp3 bonds bearing vicinal stereocenters by synergistic palladium and phase-transfer catalysis. Angew. Chem. Int. Ed., 2023, 62: e202215714. doi: 10.1002/anie.202215714
    [39]
    Wang C D, Guo Y J, Wang X M, et al. Ni-catalyzed regioselective hydroarylation of 1-aryl-1, 3-butadienes with aryl halides. Chem. Eur. J., 2021, 27: 15903–15907. doi: 10.1002/chem.202102847
    [40]
    Lv L Y, Zhu D H, Qiu Z H, et al. Nickel-catalyzed regioselective hydrobenzylation of 1,3-dienes with hydrazones. ACS Catal., 2019, 9 (10): 9199–9205. doi: 10.1021/acscatal.9b02483
    [41]
    Iwasaki T, Shimizu R, Imanishi R, et al. Copper-catalyzed regioselective hydroalkylation of 1,3-dienes with alkyl fluorides and Grignard reagents. Angew. Chem. Int. Ed., 2015, 54: 9347–9350. doi: 10.1002/anie.201503288
    [42]
    Zhang Q L, Zhu M H, Zi W W. Synergizing palladium with Lewis base catalysis for stereodivergent coupling of 1,3-dienes with pentafluorophenyl acetates. Chem, 2022, 8: 2784–2796. doi: 10.1016/j.chempr.2022.07.014
    [43]
    Yang S Q, Han A J, Liu Y, et al. Catalytic asymmetric hydroalkoxylation and formal hydration and hydroaminoxylation of conjugated dienes. J. Am. Chem. Soc., 2023, 145 (7): 3915–3925. doi: 10.1021/jacs.2c11843
    [44]
    Li Q, Wang Z, Dong V M, et al. Enantioselective hydroalkoxylation of 1,3-dienes via Ni-catalysis. J. Am. Chem. Soc., 2023, 145 (7): 3909–3914. doi: 10.1021/jacs.2c12779
    [45]
    Zhang W S, Ji D W, Li Y, et al. Regio- and stereoselective diarylation of 1,3-dienes via Ni/Cr cocatalysis. ACS Catal., 2022, 12 (4): 2158–2165. doi: 10.1021/acscatal.1c05441
    [46]
    Tsuji H, Takahashi Y, Kawatsura M. Nickel-catalyzed hydroalkylation of 1,3-dienes with malonates using a homoallyl carbonate as the 1, 3-diene and hydride source. Tetrahedron Lett., 2021, 68: 152916. doi: 10.1016/j.tetlet.2021.152916
    [47]
    Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 16, Revision C.01. Wallingford, CT: Gaussian, Inc., 2016.
    [48]
    Vosko S H, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys., 1980, 58: 1200–1211. doi: 10.1139/p80-159
    [49]
    Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 1988, 37: 785–789. doi: 10.1103/physrevb.37.785
    [50]
    Becke A D. Density-functional thermochemistry. Ⅲ. The role of exact exchange. J. Chem. Phys., 1993, 98: 5648–5652. doi: 10.1063/1.464913
    [51]
    Stephens P J, Devlin F J, Chabalowski C F, et al. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem., 1994, 98: 11623–11627. doi: 10.1021/j100096a001
    [52]
    Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 2010, 132: 154104. doi: 10.1063/1.3382344
    [53]
    Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem., 2011, 32: 1456–1465. doi: 10.1002/jcc.21759
    [54]
    Zhao Y, Truhlar D G. Density functionals with broad applicability in chemistry. Acc. Chem. Res., 2008, 41: 157–167. doi: 10.1021/ar700111a
    [55]
    Zhao Y, Truhlar D G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc., 2008, 120: 215–241. doi: 10.1007/s00214-007-0310-x
    [56]
    Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys., 2005, 7: 3297–3305. doi: 10.1039/b508541a
    [57]
    Weigend F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys., 2006, 8: 1057–1065. doi: 10.1039/b515623h
    [58]
    Marenich A V, Cramer C J, Truhlar D G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B, 2009, 113: 6378–6396. doi: 10.1021/jp810292n
    [59]
    Fukui K. Formulation of the reaction coordinate. J. Phys. Chem., 1970, 74: 4161–4163. doi: 10.1021/j100717a029
    [60]
    Fukui K. The path of chemical reactions–The IRC approach. Acc. Chem. Res., 1981, 14: 363–368. doi: 10.1021/ar00072a001
    [61]
    Martin R L, Hay P J, Pratt L R. Hydrolysis of ferric ion in water and conformational equilibrium. J. Phys. Chem. A, 1998, 102: 3565–3573. doi: 10.1021/jp980229p
    [62]
    Gusev D G. Assessing the accuracy of M06-L organometallic thermochemistry. Organometallics, 2013, 32: 4239–4243. doi: 10.1021/om400412p
    [63]
    Hopmann K H. How accurate is DFT for iridium-mediated chemistry? Organometallics, 2016, 35: 3795–3807. doi: 10.1021/acs.organomet.6b00377
    [64]
    Besora M, Vidossich P, Lledós A, et al. Calculation of reaction free energies in solution: A comparison of current approaches. J. Phys. Chem. A, 2018, 122: 1392–1399. doi: 10.1021/acs.jpca.7b11580
    [65]
    Legault C Y. CYLview, 1.0b. Université de Sherbrooke, 2009. http://www.cylview.org.
    [66]
    Long J, Ding C, Yin G Y. Nickel/Brønsted acid dual-catalyzed regioselective C–H bond allylation of phenols with 1,3-dienes. Org. Chem. Front., 2022, 9: 3834–3839. doi: 10.1039/D2QO00637E
    [67]
    Xiao L J, Cheng L, Feng W M, et al. Nickel(0)-catalyzed hydroarylation of styrenes and 1,3-dienes with organoboron compounds. Angew. Chem., Int. Ed., 2018, 57: 461–464. doi: 10.1002/anie.201710735
    [68]
    Chen T T, Yang H J, Yang Y, et al. Water-accelerated nickel-catalyzed α-crotylation of simple ketones with 1, 3-butadiene under pH and redox-neutral conditions. ACS Catal., 2020, 10 (7): 4238–4243. doi: 10.1021/acscatal.0c00019
    [69]
    Wu K Q, Li H, Zhou A, et al. Palladium-catalyzed chemo- and regioselective C–H bond functionalization of phenols with 1, 3-dienes. J. Org. Chem., 2023, 88 (4): 2599–2604. doi: 10.1021/acs.joc.2c02697
    [70]
    Cheng L, Li M M, Wang B, et al. Nickel-catalyzed hydroalkylation and hydroalkenylation of 1,3-dienes with hydrazones. Chem. Sci., 2019, 10: 10417–10421. doi: 10.1039/c9sc04177j
    [71]
    Asgari P, Hua Y, Bokka A, et al. Catalytic hydrogen atom transfer from hydrosilanes to vinylarenes for hydrosilylation and polymerization. Nat. Catal., 2019, 2: 164–173. doi: 10.1038/s41929-018-0217-z
    [72]
    Guo Y, Li S H. Unusual concerted Lewis acid–Lewis base mechanism for hydrogen activation by a phosphine-borane compound. Inorg. Chem., 2008, 47 (14): 6212–6219. doi: 10.1021/ic702489s
    [73]
    Liu L, Lukose B, Ensing B. Hydrogen activation by frustrated Lewis pairs revisited by metadynamics simulations. J. Phys. Chem., C, 2017, 121 (4): 2046–2051. doi: 10.1021/acs.jpcc.6b09991

    Article Metrics

    Article views (319) PDF downloads(1202)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return