ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Earth and Space 18 April 2023

Diagenetic effects on strontium isotope (87Sr/86Sr) and elemental (Sr, Mn, and Fe) signatures of Late Ordovician carbonates

Cite this:
https://doi.org/10.52396/JUSTC-2022-0160
More Information
  • Author Bio:

    Dongping Hu is currently an Associate Research Fellow at the University of Science and Technology of China (USTC). He received his Ph.D. degree in Geology from USTC in 2017. His research mainly focuses on the reconstruction of paleoenvironmental changes and their potential influences on biological evolution by using multiple stable isotope systematics, such as carbon, sulfur, uranium, and mercury isotopes

  • Corresponding author: E-mail: hudp08@mail.ustc.edu.cn
  • Received Date: 11 November 2022
  • Accepted Date: 12 December 2022
  • Available Online: 18 April 2023
  • Understanding the effect and extent of diagenesis on the isotopic compositions of Sr in marine carbonates is a critical prerequisite for their use to unravel past environments. Here, we explore the dominant controls on carbonate 87Sr/86Sr of a Late Ordovician section from the Monitor Range, USA. Our results reveal a distinct increase in 87Sr/86Sr from 0.70794 to 0.70830 in the mid-upper D. ornatus zone, which is markedly higher than the published datasets of contemporaneous samples with a relatively lower and stable 87Sr/86Sr ratio of ~0.7079. These elevated 87Sr/86Sr ratios suggest a local and post-depositional overprint and cannot be interpreted to reflect the 87Sr/86Sr of the coeval seawater. Furthermore, 87Sr/86Sr exhibits statistically significant positive correlations with geochemical indicators for diagenesis ([Mn], [Fe], Mn/Sr, Fe/Sr), indicating that diagenetic alteration is the principal control on the observed radiogenic 87Sr/86Sr values. Using a numerical model of marine diagenetic fluid-rock interaction, we demonstrate that the observed Sr isotopic and elemental data can be best explained by the chemical variations in bulk carbonates associated with diagenetic alteration. Our results highlight that diagenesis may significantly alter the pristine 87Sr/86Sr ratios of carbonates than previously thought, although the samples satisfy the stricter geochemical criteria of Sr isotope preservation ([Sr] > 300 ppm, [Mn] < 300 ppm, [Fe] < 1000 ppm, Mn/Sr < 0.2, Fe/Sr < 1.6), pointing to the need for more caution when using bulk carbonate 87Sr/86Sr as a tracer of paleoenvironmental changes.
      87Sr/ 86Sr of carbonates can still be diagenetically altered although the samples meet the stricter geochemical criteria of retention.
    Understanding the effect and extent of diagenesis on the isotopic compositions of Sr in marine carbonates is a critical prerequisite for their use to unravel past environments. Here, we explore the dominant controls on carbonate 87Sr/86Sr of a Late Ordovician section from the Monitor Range, USA. Our results reveal a distinct increase in 87Sr/86Sr from 0.70794 to 0.70830 in the mid-upper D. ornatus zone, which is markedly higher than the published datasets of contemporaneous samples with a relatively lower and stable 87Sr/86Sr ratio of ~0.7079. These elevated 87Sr/86Sr ratios suggest a local and post-depositional overprint and cannot be interpreted to reflect the 87Sr/86Sr of the coeval seawater. Furthermore, 87Sr/86Sr exhibits statistically significant positive correlations with geochemical indicators for diagenesis ([Mn], [Fe], Mn/Sr, Fe/Sr), indicating that diagenetic alteration is the principal control on the observed radiogenic 87Sr/86Sr values. Using a numerical model of marine diagenetic fluid-rock interaction, we demonstrate that the observed Sr isotopic and elemental data can be best explained by the chemical variations in bulk carbonates associated with diagenetic alteration. Our results highlight that diagenesis may significantly alter the pristine 87Sr/86Sr ratios of carbonates than previously thought, although the samples satisfy the stricter geochemical criteria of Sr isotope preservation ([Sr] > 300 ppm, [Mn] < 300 ppm, [Fe] < 1000 ppm, Mn/Sr < 0.2, Fe/Sr < 1.6), pointing to the need for more caution when using bulk carbonate 87Sr/86Sr as a tracer of paleoenvironmental changes.
    • The Monitor Range section records significantly higher 87Sr/86Sr values than the coeval seawater.
    • The radiogenic 87Sr/86Sr ratios can be fully attributed to diagenetic alteration.
    • A comprehensive approach that incorporates evaluation of 87Sr/86Sr correlations with diagenetic indicators and numerical simulation is proposed to identify the primary seawater Sr isotope signal.

  • loading
  • [1]
    Krissansen-Totton J, Buick R, Catling D C. A statistical analysis of the carbon isotope record from the Archean to Phanerozoic and implications for the rise of oxygen. American Journal of Science, 2015, 315 (4): 275–316. doi: 10.2475/04.2015.01
    [2]
    Lu Z L, Lu W Y, Rickaby R E M, et al. Earth history of oxygen and the iprOxy. In: Elements in Geochemical Tracers in Earth System Science. Cambridge, UK: Cambridge University Press, 2020.
    [3]
    Ling H F, Chen X, Wang D, et al. Cerium anomaly variations in Ediacaran–earliest Cambrian carbonates from the Yangtze Gorges area, South China: Implications for oxygenation of coeval shallow seawater. Precambrian Research, 2013, 225: 110–127. doi: 10.1016/j.precamres.2011.10.011
    [4]
    Lau K V, Romaniello S J, Zhang F F. The uranium isotope paleoredox proxy. In: Elements in Geochemical Tracers in Earth System Science. Cambridge, UK: Cambridge University Press, 2019.
    [5]
    Hoffman P F, Kaufman A J, Halverson G P, et al. A Neoproterozoic snowball Earth. Science, 1998, 281 (5381): 1342–1346. doi: 10.1126/science.281.5381.1342
    [6]
    Young S A, Saltzman M R, Foland K A, et al. A major drop in seawater 87Sr/86Sr during the Middle Ordovician (Darriwilian): Links to volcanism and climate. Geology, 2009, 37 (10): 951–954. doi: 10.1130/G30152A.1
    [7]
    Capo R C, Depaolo D J. Seawater strontium isotopic variations from 2.5 million years ago to the present. Science, 1990, 249 (4964): 51–55. doi: 10.1126/science.249.4964.51
    [8]
    Sedlacek A R C, Saltzman M R, Thomas A, et al. 87Sr/86Sr stratigraphy from the Early Triassic of Zal, Iran: Linking temperature to weathering rates and the tempo of ecosystem recovery. Geology, 2014, 42 (9): 779–782. doi: 10.1130/G35545.1
    [9]
    Blum J D, Erel Y. A silicate weathering mechanism linking increases in marine 87Sr/86Sr with global glaciation. Nature, 1995, 373 (6513): 415–418. doi: 10.1038/373415a0
    [10]
    Halverson G P, Dudás F Ö, Maloof A C, et al. Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 256 (3–4): 103–129. doi: 10.1016/j.palaeo.2007.02.028
    [11]
    Swanson-Hysell N L, Macdonald F A. Tropical weathering of the Taconic orogeny as a driver for Ordovician cooling. Geology, 2017, 45 (8): 719–722. doi: 10.1130/G38985.1
    [12]
    Prokoph A, Shields G A, Veizer J. Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth-Science Reviews, 2008, 87 (3–4): 113–133. doi: 10.1016/j.earscirev.2007.12.003
    [13]
    Paytan A, Griffith E M, Eisenhauer A, et al. A 35-million-year record of seawater stable Sr isotopes reveals a fluctuating global carbon cycle. Science, 2021, 371 (6536): 1346–1350. doi: 10.1126/science.aaz9266
    [14]
    Wang W Q, Katchinoff J A R, Garbelli C, et al. Revisiting the Permian seawater 87Sr/86Sr record: New perspectives from brachiopod proxy data and stochastic oceanic box models. Earth-Science Reviews, 2021, 218: 103679. doi: 10.1016/j.earscirev.2021.103679
    [15]
    Edwards C T, Saltzman M R, Leslie S A, et al. Strontium isotope (87Sr/86Sr) stratigraphy of Ordovician bulk carbonate: Implications for preservation of primary seawater values. Geological Society of America Bulletin, 2015, 127 (9-10): 1275–1289. doi: 10.1130/B31149.1
    [16]
    Saltzman M R, Edwards C T, Leslie S A, et al. Calibration of a conodont apatite-based Ordovician 87Sr/86Sr curve to biostratigraphy and geochronology: Implications for stratigraphic resolution. Geological Society of America Bulletin, 2014, 126 (11–12): 1551–1568. doi: 10.1130/B31038.1
    [17]
    Veizer J, Buhl D, Diener A, et al. Strontium isotope stratigraphy: potential resolution and event correlation. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 132 (1-4): 65–77. doi: 10.1016/S0031-0182(97)00054-0
    [18]
    Burke W H, Denison R E, Hetherington E A, et al. Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology, 1982, 10 (10): 516–519. doi: 10.1130/0091-7613(1982)10<516:VOSSTP>2.0.CO;2
    [19]
    McArthur J M, Howarth R J, Shields G A, et al. Strontium isotope stratigraphy. In: Geologic Time Scale 2020. Amsterdam: Elsevier, 2020: 211–238.
    [20]
    Banner J L, Hanson G N. Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis. Geochimica et Cosmochimica Acta, 1990, 54 (11): 3123–3137. doi: 10.1016/0016-7037(90)90128-8
    [21]
    Jacobsen S B, Kaufman A J. The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chemical Geology, 1999, 161: 37–57. doi: 10.1016/S0009-2541(99)00080-7
    [22]
    Banner J L. Application of the trace-element and isotope geochemistry of strontium to studies of carbonate diagenesis. Sedimentology, 1995, 42 (5): 805–824. doi: 10.1111/j.1365-3091.1995.tb00410.x
    [23]
    Finnegan S, Bergmann K, Eiler J M, et al. The magnitude and duration of Late Ordovician–Early Silurian glaciation. Science, 2011, 331 (6019): 903–906. doi: 10.1126/science.1200803
    [24]
    Trotter J A, Williams I S, Barnes C R, et al. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry. Science, 2008, 321 (5888): 550–554. doi: 10.1126/science.1155814
    [25]
    Finney S C, Berry W B N, Cooper J D, et al. Late Ordovician mass extinction: A new perspective from stratigraphic sections in central Nevada. Geology, 1999, 27 (3): 215–218. doi: 10.1130/0091-7613(1999)027<0215:LOMEAN>2.3.CO;2
    [26]
    Finney S C, Cooper J D, Berry W B N. Late Ordovician mass extinction: Sedimentologic, cyclostratigraphic, and biostratigraphic records from platform and basin successions, central Nevada. In: Proterozoic to Recent Stratigraphy, Tectonics, and Volcanology, Utah, Nevada, Southern Idaho, and Central Mexico. Provo, UT: Brigham Young University, 1997: 79–104.
    [27]
    Saltzman M R, Young S A. Long-lived glaciation in the Late Ordovician? Isotopic and sequence-stratigraphic evidence from western Laurentia. Geology, 2005, 33 (2): 109–112. doi: 10.1130/G21219.1
    [28]
    LaPorte D F, Holmden C, Patterson W P, et al. Local and global perspectives on carbon and nitrogen cycling during the Hirnantian glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 276 (1–4): 182–195. doi: 10.1016/j.palaeo.2009.03.009
    [29]
    Jones D S, Martini A M, Fike D A, et al. A volcanic trigger for the Late Ordovician mass extinction? Mercury data from south China and Laurentia. Geology, 2017, 45 (7): 631–634. doi: 10.1130/G38940.1
    [30]
    Jones D S, Creel R C, Rios B A. Carbon isotope stratigraphy and correlation of depositional sequences in the Upper Ordovician Ely Springs Dolostone, eastern Great Basin, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 458: 85–101. doi: 10.1016/j.palaeo.2016.01.036
    [31]
    Kozik N P, Gill B C, Owens J D, et al. Geochemical records reveal protracted and differential marine redox change associated with Late Ordovician climate and mass extinctions. AGU Advances, 2022, 3 (1): e2021AV000563. doi: 10.1029/2021AV000563
    [32]
    Finney S C, Berry W B N, Cooper J D. The influence of denitrifying seawater on graptolite extinction and diversification during the Hirnantian (latest Ordovician) mass extinction event. Lethaia, 2007, 40 (3): 281–291. doi: 10.1111/j.1502-3931.2007.00027.x
    [33]
    Lin J, Liu Y S, Chen H H, et al. Review of high-precision Sr isotope analyses of low-Sr geological samples. Journal of Earth Science, 2015, 26 (5): 763–774. doi: 10.1007/s12583-015-0593-0
    [34]
    Goldman D, Sadler P M, Leslie S A. The Ordovician period. In: Geologic Time Scale 2020. Amsterdam: Elsevier, 2020: 631–694.
    [35]
    Denison R E, Koepnick R B, Fletcher A, et al. Criteria for the retention of original seawater 87Sr/86Sr in ancient shelf limestones. Chemical Geology, 1994, 112 (1-2): 131–143. doi: 10.1016/0009-2541(94)90110-4
    [36]
    Tucker M E, Wright V P. Carbonate Sedimentology. Oxford: Blackwell Scientific, 1990.
    [37]
    Brand U, Veizer J. Chemical diagenesis of a multicomponent carbonate system – 2: Stable isotopes. Journal of Sedimentary Research, 1981, 51 (3): 987–997. doi: 10.1306/212F7DF6-2B24-11D7-8648000102C1865D
    [38]
    Kaurova O K, Ovchinnikova G V, Gorokhov I M. U-Th-Pb systematics of precambrian carbonate rocks: Dating of the formation and transformation of carbonate sediments. Stratigraphy and Geological Correlation, 2010, 18 (3): 252–268. doi: 10.1134/S0869593810030032
    [39]
    Brand U, Veizer J. Chemical diagenesis of a multicomponent carbonate system – 1: Trace elements. Journal of Sedimentary Research, 1980, 50 (4): 1219–1236. doi: 10.1306/212F7BB7-2B24-11D7-8648000102C1865D
    [40]
    Wang W Q, Garbelli C, Zheng Q F, et al. Permian 87Sr/86Sr chemostratigraphy from carbonate sequences in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 500: 84–94. doi: 10.1016/j.palaeo.2018.03.035
    [41]
    Kuznetsov A B, Semikhatov M A, Gorokhov I M, et al. Sr isotopic composition in carbonates of the Karatau Group, southern Urals, and standard curve of 87Sr/86Sr variations in the Late Riphean ocean. Stratigraphy and Geological Correlation, 2003, 11 (5): 415–449.
    [42]
    Rud’ko S V, Kuznetsov A B, Piskunov V K. Sr isotope chemostratigraphy of Upper Jurassic carbonate rocks in the Demerdzhi Plateau (Crimean Mountains). Stratigraphy and Geological Correlation, 2014, 22 (5): 494–506. doi: 10.1134/S0869593814050074
    [43]
    Qing H R, Barnes C R, Buhl D, et al. The strontium isotopic composition of Ordovician and Silurian brachiopods and conodonts: Relationships to geological events and implications for coeval seawater. Geochimica et Cosmochimica Acta, 1998, 62 (10): 1721–1733. doi: 10.1016/S0016-7037(98)00104-5
    [44]
    Shields G A, Carden G A F, Veizer J, et al. Sr, C, and O isotope geochemistry of Ordovician brachiopods: a major isotopic event around the Middle-Late Ordovician transition. Geochimica et Cosmochimica Acta, 2003, 67 (11): 2005–2025. doi: 10.1016/S0016-7037(02)01116-X
    [45]
    Bergström S M, Chen X, GutiÉrrez-Marco J C, et al. The new chronostratigraphic classification of the Ordovician System and its relations to major regional series and stages and to δ13C chemostratigraphy. Lethaia, 2009, 42 (1): 97–107. doi: 10.1111/j.1502-3931.2008.00136.x
  • 加载中

Catalog

    Figure  1.  Lithological, 87Sr/86Sr, [Sr], [Mn], Mn/Sr, [Fe], and Fe/Sr profiles of the Monitor Range section. Graptolite biostratigraphy and lithostratigraphy are based on Finney et al. [26]. Solid curves are the locally weighted scatterplot smoothing (LOWESS) fits for the geochemical data.

    Figure  2.  Comparison of carbonate 87Sr/86Sr records in the present study with published datasets derived from conodonts. The gray solid line is the LOWESS curve of 87Sr/86Sr datasets from Qing et al. [43], Shields et al. [44], Saltzman et al. [16], and Edwards et al. [15], representing the best fit for the published Ordovician 87Sr/86Sr data[19]. The time scale of the Ordovician is based on Geologic Time Scale 2020[34], and the stage slices are from Bergström et al. [45]. Hi.: Hirnantian.

    Figure  3.  Crossplots of (a) 87Sr/86Sr versus [Mn], (b) 87Sr/86Sr versus Mn/Sr, (c) 87Sr/86Sr versus [Fe], (d) 87Sr/86Sr versus Fe/Sr, (e) [Mn] versus [Fe], and (f) Mn/Sr versus Fe/Sr from the Monitor Range section. r represents the correlation coefficient. Note that all six crossplots show statistically significant positive correlations.

    Figure  4.  Modeling results illustrating the evolution of carbonate 87Sr/86Sr versus the weight ratio of fluid to rock (N) and [Sr] during fluid-rock interactions in an open system condition. (a) 87Sr/86Sr versus N, (b) 87Sr/86Sr versus [Sr]. An increasing N value representing a greater volume of fluid has reacted with carbonate. The final 87Sr/86Sr of carbonate is simulated with different initial Sr concentrations of fluid (i.e., ${{{C}}_{\rm Sr}^{r0}/{{C}}_{\rm Sr}^{f0}}$ = 3, 13, 26, and 65). The $\text{(}{}_{\text{}}{}^{\text{87}}\text{Sr/}{{}_{\text{}}{}^{\text{86}}\text{Sr)}}_{\text{}}^{{r0}}$ and ${{C}}_{\rm Sr}^{r0}$ of the primary carbonates are assigned to be 0.7079 and 1300 ppm, respectively, comparable with those of the least-altered samples from the Monitor Range section. The effective fluid-rock distribution coefficient of Sr (${{D}}_{\rm Sr}$) and 87Sr/86Sr of fluid ($\text{(}{}_{\text{}}{}^{\text{87}}\text{Sr/}{{}_{\text{}}{}^{\text{86}}\text{Sr)}}_{\text{}}^{{f0}}$) are set to 1 and 0.711[21, 22], respectively.

    Figure  5.  Modeling results illustrating the evolution of carbonate 87Sr/86Sr versus the diagenetic indicators. (a) 87Sr/86Sr versus [Mn], (b) 87Sr/86Sr versus Mn/Sr, (c) 87Sr/86Sr versus [Fe], (d) 87Sr/86Sr versus Fe/Sr. ${{D}}_{\text{Mn}}$ = 600, ${{D}}_{\rm Fe}$ = 150[21, 39]. Other constant parameters are same as in Fig. 4.

    Figure  6.  Crossplots of modeled 87Sr/86Sr and geochemical indicators of diagenesis ([Mn], Mn/Sr, [Fe], and Fe/Sr) overlain over data from the Monitor Range section. (a) 87Sr/86Sr versus [Mn], (b) 87Sr/86Sr versus Mn/Sr, (c) 87Sr/86Sr versus [Fe], (d) 87Sr/86Sr versus Fe/Sr. The arrows illustrate the evolution direction of 87Sr/86Sr with different diagenetic indicators in primary carbonates during diagenesis. The dotted vertical lines denote [Mn] = 300 ppm, Mn/Sr = 0.2, [Fe] = 1000 ppm, and Fe/Sr = 1.6, respectively, representing the threshold of the stricter geochemical criteria for the preservation of Sr isotope systems in carbonates.

    [1]
    Krissansen-Totton J, Buick R, Catling D C. A statistical analysis of the carbon isotope record from the Archean to Phanerozoic and implications for the rise of oxygen. American Journal of Science, 2015, 315 (4): 275–316. doi: 10.2475/04.2015.01
    [2]
    Lu Z L, Lu W Y, Rickaby R E M, et al. Earth history of oxygen and the iprOxy. In: Elements in Geochemical Tracers in Earth System Science. Cambridge, UK: Cambridge University Press, 2020.
    [3]
    Ling H F, Chen X, Wang D, et al. Cerium anomaly variations in Ediacaran–earliest Cambrian carbonates from the Yangtze Gorges area, South China: Implications for oxygenation of coeval shallow seawater. Precambrian Research, 2013, 225: 110–127. doi: 10.1016/j.precamres.2011.10.011
    [4]
    Lau K V, Romaniello S J, Zhang F F. The uranium isotope paleoredox proxy. In: Elements in Geochemical Tracers in Earth System Science. Cambridge, UK: Cambridge University Press, 2019.
    [5]
    Hoffman P F, Kaufman A J, Halverson G P, et al. A Neoproterozoic snowball Earth. Science, 1998, 281 (5381): 1342–1346. doi: 10.1126/science.281.5381.1342
    [6]
    Young S A, Saltzman M R, Foland K A, et al. A major drop in seawater 87Sr/86Sr during the Middle Ordovician (Darriwilian): Links to volcanism and climate. Geology, 2009, 37 (10): 951–954. doi: 10.1130/G30152A.1
    [7]
    Capo R C, Depaolo D J. Seawater strontium isotopic variations from 2.5 million years ago to the present. Science, 1990, 249 (4964): 51–55. doi: 10.1126/science.249.4964.51
    [8]
    Sedlacek A R C, Saltzman M R, Thomas A, et al. 87Sr/86Sr stratigraphy from the Early Triassic of Zal, Iran: Linking temperature to weathering rates and the tempo of ecosystem recovery. Geology, 2014, 42 (9): 779–782. doi: 10.1130/G35545.1
    [9]
    Blum J D, Erel Y. A silicate weathering mechanism linking increases in marine 87Sr/86Sr with global glaciation. Nature, 1995, 373 (6513): 415–418. doi: 10.1038/373415a0
    [10]
    Halverson G P, Dudás F Ö, Maloof A C, et al. Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 256 (3–4): 103–129. doi: 10.1016/j.palaeo.2007.02.028
    [11]
    Swanson-Hysell N L, Macdonald F A. Tropical weathering of the Taconic orogeny as a driver for Ordovician cooling. Geology, 2017, 45 (8): 719–722. doi: 10.1130/G38985.1
    [12]
    Prokoph A, Shields G A, Veizer J. Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth-Science Reviews, 2008, 87 (3–4): 113–133. doi: 10.1016/j.earscirev.2007.12.003
    [13]
    Paytan A, Griffith E M, Eisenhauer A, et al. A 35-million-year record of seawater stable Sr isotopes reveals a fluctuating global carbon cycle. Science, 2021, 371 (6536): 1346–1350. doi: 10.1126/science.aaz9266
    [14]
    Wang W Q, Katchinoff J A R, Garbelli C, et al. Revisiting the Permian seawater 87Sr/86Sr record: New perspectives from brachiopod proxy data and stochastic oceanic box models. Earth-Science Reviews, 2021, 218: 103679. doi: 10.1016/j.earscirev.2021.103679
    [15]
    Edwards C T, Saltzman M R, Leslie S A, et al. Strontium isotope (87Sr/86Sr) stratigraphy of Ordovician bulk carbonate: Implications for preservation of primary seawater values. Geological Society of America Bulletin, 2015, 127 (9-10): 1275–1289. doi: 10.1130/B31149.1
    [16]
    Saltzman M R, Edwards C T, Leslie S A, et al. Calibration of a conodont apatite-based Ordovician 87Sr/86Sr curve to biostratigraphy and geochronology: Implications for stratigraphic resolution. Geological Society of America Bulletin, 2014, 126 (11–12): 1551–1568. doi: 10.1130/B31038.1
    [17]
    Veizer J, Buhl D, Diener A, et al. Strontium isotope stratigraphy: potential resolution and event correlation. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 132 (1-4): 65–77. doi: 10.1016/S0031-0182(97)00054-0
    [18]
    Burke W H, Denison R E, Hetherington E A, et al. Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology, 1982, 10 (10): 516–519. doi: 10.1130/0091-7613(1982)10<516:VOSSTP>2.0.CO;2
    [19]
    McArthur J M, Howarth R J, Shields G A, et al. Strontium isotope stratigraphy. In: Geologic Time Scale 2020. Amsterdam: Elsevier, 2020: 211–238.
    [20]
    Banner J L, Hanson G N. Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis. Geochimica et Cosmochimica Acta, 1990, 54 (11): 3123–3137. doi: 10.1016/0016-7037(90)90128-8
    [21]
    Jacobsen S B, Kaufman A J. The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chemical Geology, 1999, 161: 37–57. doi: 10.1016/S0009-2541(99)00080-7
    [22]
    Banner J L. Application of the trace-element and isotope geochemistry of strontium to studies of carbonate diagenesis. Sedimentology, 1995, 42 (5): 805–824. doi: 10.1111/j.1365-3091.1995.tb00410.x
    [23]
    Finnegan S, Bergmann K, Eiler J M, et al. The magnitude and duration of Late Ordovician–Early Silurian glaciation. Science, 2011, 331 (6019): 903–906. doi: 10.1126/science.1200803
    [24]
    Trotter J A, Williams I S, Barnes C R, et al. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry. Science, 2008, 321 (5888): 550–554. doi: 10.1126/science.1155814
    [25]
    Finney S C, Berry W B N, Cooper J D, et al. Late Ordovician mass extinction: A new perspective from stratigraphic sections in central Nevada. Geology, 1999, 27 (3): 215–218. doi: 10.1130/0091-7613(1999)027<0215:LOMEAN>2.3.CO;2
    [26]
    Finney S C, Cooper J D, Berry W B N. Late Ordovician mass extinction: Sedimentologic, cyclostratigraphic, and biostratigraphic records from platform and basin successions, central Nevada. In: Proterozoic to Recent Stratigraphy, Tectonics, and Volcanology, Utah, Nevada, Southern Idaho, and Central Mexico. Provo, UT: Brigham Young University, 1997: 79–104.
    [27]
    Saltzman M R, Young S A. Long-lived glaciation in the Late Ordovician? Isotopic and sequence-stratigraphic evidence from western Laurentia. Geology, 2005, 33 (2): 109–112. doi: 10.1130/G21219.1
    [28]
    LaPorte D F, Holmden C, Patterson W P, et al. Local and global perspectives on carbon and nitrogen cycling during the Hirnantian glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 276 (1–4): 182–195. doi: 10.1016/j.palaeo.2009.03.009
    [29]
    Jones D S, Martini A M, Fike D A, et al. A volcanic trigger for the Late Ordovician mass extinction? Mercury data from south China and Laurentia. Geology, 2017, 45 (7): 631–634. doi: 10.1130/G38940.1
    [30]
    Jones D S, Creel R C, Rios B A. Carbon isotope stratigraphy and correlation of depositional sequences in the Upper Ordovician Ely Springs Dolostone, eastern Great Basin, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 458: 85–101. doi: 10.1016/j.palaeo.2016.01.036
    [31]
    Kozik N P, Gill B C, Owens J D, et al. Geochemical records reveal protracted and differential marine redox change associated with Late Ordovician climate and mass extinctions. AGU Advances, 2022, 3 (1): e2021AV000563. doi: 10.1029/2021AV000563
    [32]
    Finney S C, Berry W B N, Cooper J D. The influence of denitrifying seawater on graptolite extinction and diversification during the Hirnantian (latest Ordovician) mass extinction event. Lethaia, 2007, 40 (3): 281–291. doi: 10.1111/j.1502-3931.2007.00027.x
    [33]
    Lin J, Liu Y S, Chen H H, et al. Review of high-precision Sr isotope analyses of low-Sr geological samples. Journal of Earth Science, 2015, 26 (5): 763–774. doi: 10.1007/s12583-015-0593-0
    [34]
    Goldman D, Sadler P M, Leslie S A. The Ordovician period. In: Geologic Time Scale 2020. Amsterdam: Elsevier, 2020: 631–694.
    [35]
    Denison R E, Koepnick R B, Fletcher A, et al. Criteria for the retention of original seawater 87Sr/86Sr in ancient shelf limestones. Chemical Geology, 1994, 112 (1-2): 131–143. doi: 10.1016/0009-2541(94)90110-4
    [36]
    Tucker M E, Wright V P. Carbonate Sedimentology. Oxford: Blackwell Scientific, 1990.
    [37]
    Brand U, Veizer J. Chemical diagenesis of a multicomponent carbonate system – 2: Stable isotopes. Journal of Sedimentary Research, 1981, 51 (3): 987–997. doi: 10.1306/212F7DF6-2B24-11D7-8648000102C1865D
    [38]
    Kaurova O K, Ovchinnikova G V, Gorokhov I M. U-Th-Pb systematics of precambrian carbonate rocks: Dating of the formation and transformation of carbonate sediments. Stratigraphy and Geological Correlation, 2010, 18 (3): 252–268. doi: 10.1134/S0869593810030032
    [39]
    Brand U, Veizer J. Chemical diagenesis of a multicomponent carbonate system – 1: Trace elements. Journal of Sedimentary Research, 1980, 50 (4): 1219–1236. doi: 10.1306/212F7BB7-2B24-11D7-8648000102C1865D
    [40]
    Wang W Q, Garbelli C, Zheng Q F, et al. Permian 87Sr/86Sr chemostratigraphy from carbonate sequences in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 500: 84–94. doi: 10.1016/j.palaeo.2018.03.035
    [41]
    Kuznetsov A B, Semikhatov M A, Gorokhov I M, et al. Sr isotopic composition in carbonates of the Karatau Group, southern Urals, and standard curve of 87Sr/86Sr variations in the Late Riphean ocean. Stratigraphy and Geological Correlation, 2003, 11 (5): 415–449.
    [42]
    Rud’ko S V, Kuznetsov A B, Piskunov V K. Sr isotope chemostratigraphy of Upper Jurassic carbonate rocks in the Demerdzhi Plateau (Crimean Mountains). Stratigraphy and Geological Correlation, 2014, 22 (5): 494–506. doi: 10.1134/S0869593814050074
    [43]
    Qing H R, Barnes C R, Buhl D, et al. The strontium isotopic composition of Ordovician and Silurian brachiopods and conodonts: Relationships to geological events and implications for coeval seawater. Geochimica et Cosmochimica Acta, 1998, 62 (10): 1721–1733. doi: 10.1016/S0016-7037(98)00104-5
    [44]
    Shields G A, Carden G A F, Veizer J, et al. Sr, C, and O isotope geochemistry of Ordovician brachiopods: a major isotopic event around the Middle-Late Ordovician transition. Geochimica et Cosmochimica Acta, 2003, 67 (11): 2005–2025. doi: 10.1016/S0016-7037(02)01116-X
    [45]
    Bergström S M, Chen X, GutiÉrrez-Marco J C, et al. The new chronostratigraphic classification of the Ordovician System and its relations to major regional series and stages and to δ13C chemostratigraphy. Lethaia, 2009, 42 (1): 97–107. doi: 10.1111/j.1502-3931.2008.00136.x

    Article Metrics

    Article views (815) PDF downloads(1437)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return