[1] |
Preskill J. Quantum Computing in the NISQ era and beyond. Quantum, 2018, 2: 79. doi: 10.22331/q-2018-08-06-79
|
[2] |
McArdle S, Endo S, Aspuru-Guzik A, et al. Quantum computational chemistry. Rev. Mod. Phys., 2020, 92: 015003. doi: 10.1103/RevModPhys.92.015003
|
[3] |
Yung M H, Casanova J, Mezzacapo A, et al. From transistor to trapped-ion computers for quantum chemistry. Sci. Rep., 2014, 4 (1): 3589. doi: 10.1038/srep03589
|
[4] |
Tilly J, Chen H, Cao S, et al. The Variational Quantum Eigensolver: a review of methods and best practices. 2021. https://arxiv.org/abs/2111.05176. Accessed August 1, 2022.
|
[5] |
Cerezo M, Arrasmith A, Babbush R, et al. Variational quantum algorithms. Nat. Rev. Phys., 2021, 3 (9): 625–644. doi: 10.1038/s42254-021-00348-9
|
[6] |
Magann A B, Arenz C, Grace M D, et al. From pulses to circuits and back again: A quantum optimal control perspective on variational quantum algorithms. PRX Quantum, 2021, 2: 010101. doi: 10.1103/PRXQuantum.2.010101
|
[7] |
Fedorov D A, Peng B, Govind N, et al. VQE method: a short survey and recent developments. Mater. Theory, 2022, 6: 2. doi: 10.1186/s41313-021-00032-6
|
[8] |
Cao Y, Romero J, Olson J P, et al. Quantum chemistry in the age of quantum computing. Chem. Rev., 2019, 119: 10856–10915. doi: 10.1021/acs.chemrev.8b00803
|
[9] |
Aspuru-Guzik A, Dutoi A D, Love P J, et al. Simulated quantum computation of molecular energies. Science, 2005, 309: 1704–1707. doi: 10.1126/science.1113479
|
[10] |
Peruzzo A, McClean J, Shadbolt P, et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun., 2014, 5: 4213. doi: 10.1038/ncomms5213
|
[11] |
Hempel C, Maier C, Romero J, et al. Quantum chemistry calculations on a trapped-ion quantum simulator. Phys. Rev. X, 2018, 8: 031022. doi: 10.1103/PhysRevX.8.031022
|
[12] |
Nam Y, Chen J S, Pisenti N C, et al. Ground-state energy estimation of the water molecule on a trapped-ion quantum computer. npj Quantum Inf., 2020, 6: 33. doi: 10.1038/s41534-020-0259-3
|
[13] |
O’Malley P J J, Babbush R, Kivlichan I D, et al. Scalable quantum simulation of molecular energies. Phys. Rev. X, 2016, 6: 031007. doi: 10.1103/PhysRevX.6.031007
|
[14] |
Kandala A, Mezzacapo A, Temme K, et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 2017, 549 (7671): 242–246. doi: 10.1038/nature23879
|
[15] |
Colless J I, Ramasesh V V, Dahlen D, et al. Computation of molecular spectra on a quantum processor with an error-resilient algorithm. Phys. Rev. X, 2018, 8: 011021. doi: 10.1103/PhysRevX.8.011021
|
[16] |
McClean J R, Romero J, Babbush R, et al. The theory of variational hybrid quantum-classical algorithms. New J. Phys., 2016, 18: 023023. doi: 10.1088/1367-2630/18/2/023023
|
[17] |
Lanyon B P, Whitfield J D, Gillett G G, et al. Towards quantum chemistry on a quantum computer. Nat. Chem., 2010, 2: 106–111. doi: 10.1038/nchem.483
|
[18] |
Higgott O, Wang D, Brierley S. Variational quantum computation of excited states. Quantum, 2019, 3: 156. doi: 10.22331/q-2019-07-01-156
|
[19] |
McClean J R, Kimchi-Schwartz M E, Carter J, et al. Hybrid quantum-classical hierarchy for mitigation of decoherence and determination of excited states. Phys. Rev. A, 2017, 95: 042308. doi: 10.1103/PhysRevA.95.042308
|
[20] |
Liu J, Fan Y, Li Z, et al. Quantum algorithms for electronic structures: basis sets and boundary conditions. Chem. Soc. Rev., 2022, 51: 3263–3279. doi: 10.1039/D1CS01184G
|
[21] |
McClean J R, Boixo S, Smelyanskiy V N, et al. Barren plateaus in quantum neural network training landscapes. Nat. Commun., 2018, 9 (1): 4812. doi: 10.1038/s41467-018-07090-4
|
[22] |
Napp J. Quantifying the barren plateau phenomenon for a model of unstructured variational ansätze. 2022. https://arxiv.org/abs/2203.06174. Accessed August 1, 2022.
|
[23] |
Anschuetz E R, Kiani B T. Beyond barren plateaus: Quantum variational algorithms are swamped with traps. 2022. https://arxiv.org/abs/2205.05786. Accessed August 1, 2022.
|
[24] |
Arute F, Arya K, Babbush R, et al. Hartree-Fock on a superconducting qubit quantum computer. Science, 2020, 369 (6507): 1084–1089. doi: 10.1126/science.abb9811
|
[25] |
Huggins W J, O’Gorman B A, Rubin N C, et al. Unbiasing fermionic quantum Monte Carlo with a quantum computer. Nature, 2022, 603 (7901): 416–420. doi: 10.1038/s41586-021-04351-z
|
[26] |
Bartlett R J, Kucharski S A, Noga J. Alternative coupled-cluster ansätze Ⅱ. The unitary coupled-cluster method. Chem. Phys. Lett., 1989, 155: 133–140. doi: 10.1016/S0009-2614(89)87372-5
|
[27] |
Taube A G, Bartlett R J. New perspectives on unitary coupled-cluster theory. Int. J. Quantum Chem., 2006, 106: 3393–3401. doi: 10.1002/qua.21198
|
[28] |
Steiger D S, Häner T, Troyer M. ProjectQ: an open source software framework for quantum computing. Quantum, 2018, 2: 49. doi: 10.22331/q-2018-01-31-49
|
[29] |
ANIS M S, Mitchell A, Abraham H, et al. Qiskit. 2021. https://github.com/Qiskit/qiskit. Accessed August 1, 2022.
|
[30] |
Suzuki Y, Kawase Y, Masumura Y, et al. Qulacs: a fast and versatile quantum circuit simulator for research purpose. Quantum, 2021, 5: 559. doi: 10.22331/q-2021-10-06-559
|
[31] |
Luo X Z, Liu J G, Zhang P, et al. Yao.jl: Extensible, efficient framework for quantum algorithm design. Quantum, 2020, 4: 341. doi: 10.22331/q-2020-10-11-341
|
[32] |
Bergholm V, Izaac J, Schuld M, et al. PennyLane: Automatic differentiation of hybrid quantum-classical computations. 2018. https://arxiv.org/abs/1811.04968. Accessed August 1, 2022.
|
[33] |
Cao C, Hu J, Zhang W, et al. Progress toward larger molecular simulation on a quantum computer: Simulating a system with up to 28 qubits accelerated by point-group symmetry. Phys. Rev. A, 2022, 105: 062452. doi: 10.1103/PhysRevA.105.062452
|
[34] |
Bezanson J, Edelman A, Karpinski S, et al. Julia: A fresh approach to numerical computing. SIAM Review, 2017, 59 (1): 65–98. doi: 10.1137/141000671
|
[35] |
Sun Q, Berkelbach T C, Blunt N S, et al. PySCF: the Python-based simulations of chemistry framework. WIREs Comput. Mol. Sci., 2018, 8: e1340. doi: 10.1002/wcms.1340
|
[36] |
Orús R. A practical introduction to tensor networks: Matrix product states and projected entangled pair states. Ann. Phys., 2014, 349: 117–158. doi: 10.1016/j.aop.2014.06.013
|
[37] |
Schollwöck U. The density-matrix renormalization group in the age of matrix product states. Ann. Phys., 2011, 326 (1): 96–192. doi: 10.1016/j.aop.2010.09.012
|
[38] |
Harris C R, Millman K J, van der Walt S J, et al. Array programming with NumPy. Nature, 2020, 585 (7825): 357–362. doi: 10.1038/s41586-020-2649-2
|
[39] |
Virtanen P, Gommers R, Oliphant T E, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods, 2020, 17: 261–272. doi: 10.1038/s41592-019-0686-2
|
[40] |
Paszke A, Gross S, Massa F, et al. PyTorch: An imperative style, high-performance deep learning library. In: Wallach H, Larochelle H, Beygelzimer A, editors. Advances in Neural Information Processing Systems 32. New York: Curran Associates, Inc., 2019: 8024–8035.
|
[41] |
Jordan P, Wigner E. Über das paulische äquivalenzverbot. Z. Physik, 1928, 47: 631–651. doi: 10.1007/BF01331938
|
[42] |
Seeley J T, Richard M J, Love P J. The Bravyi-Kitaev transformation for quantum computation of electronic structure. J. Chem. Phys., 2012, 137: 224109. doi: 10.1063/1.4768229
|
[43] |
Tranter A, Love P J, Mintert F, et al. A comparison of the Bravyi-Kitaev and Jordan-Wigner transformations for the quantum simulation of quantum chemistry. J. Chem. Theory Comput., 2018, 14: 5617–5630. doi: 10.1021/acs.jctc.8b00450
|
[44] |
Liu J, Wan L Y, Li Z Y, et al. Simulating periodic systems on a quantum computer using molecular orbitals. J. Chem. Theory Comput., 2020, 16: 6904–6914. doi: 10.1021/acs.jctc.0c00881
|
[45] |
Fan Y, Liu J, Li Z Y, et al. Equation-of-motion theory to calculate accurate band structures with a quantum computer. J. Phys. Chem. Lett., 2021, 12 (36): 8833–8840. doi: 10.1021/acs.jpclett.1c02153
|
[46] |
Smith D G A, Gray J. opt_einsum - A Python package for optimizing contraction order for einsum-like expressions. J. Open Source Softw., 2018, 3 (26): 753. doi: 10.21105/joss.00753
|
[47] |
McClean J R, Sung K J, Kivlichan I D, et al. OpenFermion: The electronic structure package for quantum computers. 2017. https://arxiv.org/abs/1710.07629. Accessed August 1, 2022.
|
[48] |
Liu J G, Zhang Y H, Wan Y, et al. Variational quantum eigensolver with fewer qubits. Phys. Rev. Res., 2019, 1: 023025. doi: 10.1103/PhysRevResearch.1.023025
|
[49] |
Haghshenas R, Gray J, Potter A C, et al. Variational power of quantum circuit tensor networks. Phys. Rev. X, 2022, 12: 011047. doi: 10.1103/PhysRevX.12.011047
|
[50] |
Nguyen D, Mikushin D, Man-Hong Y. HiQ-ProjectQ: Towards user-friendly and high-performance quantum computing on GPUs. In: 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2021: 1056–1061.
|
[51] |
MindQuantum Developer. MindQuantum, version 0.6.0. 2021. https://gitee.com/mindspore/mindquantum. Accessed August 1, 2022.
|
[52] |
Cirq Developers. Cirq. 2022. https://github.com/quantumlib/Cirq. Accessed August 1, 2022.
|
[53] |
Paddle Quantum Developers. Paddle Quantum. 2020. https://github.com/PaddlePaddle/Quantum. Accessed August 1, 2022.
|
[54] |
Jones T, Brown A, Bush I, et al. QuEST and high performance simulation of quantum computers. Sci. Rep., 2019, 9 (1): 10736. doi: 10.1038/s41598-019-47174-9
|
[55] |
Kottmann J S, Alperin-Lea S, Tamayo-Mendoza T, et al. TEQUILA: a platform for rapid development of quantum algorithms. Quantum Sci. Technol., 2021, 6 (2): 024009. doi: 10.1088/2058-9565/abe567
|
[56] |
Stair N H, Evangelista F A. QForte: An efficient state-vector emulator and quantum algorithms library for molecular electronic structure. J. Chem. Theory Comput., 2022, 18 (3): 1555–1568. doi: 10.1021/acs.jctc.1c01155
|
[57] |
McCaskey A J, Lyakh D I, Dumitrescu E F, et al. XACC: a system-level software infrastructure for heterogeneous quantum-classical computing. Quantum Sci. Technol., 2020, 5 (2): 024002. doi: 10.1088/2058-9565/ab6bf6
|
[58] |
Guo C, Liu Y, Xiong M, et al. General-purpose quantum circuit simulator with projected entangled-pair states and the quantum supremacy frontier. Phys. Rev. Lett., 2019, 123: 190501. doi: 10.1103/PhysRevLett.123.190501
|
[59] |
Guo C, Zhao Y, Huang H L. Verifying random quantum circuits with arbitrary geometry using tensor network states algorithm. Phys. Rev. Lett., 2021, 126: 070502. doi: 10.1103/PhysRevLett.126.070502
|
[60] |
Liu X, Guo C, Liu Y, et al. Redefining the quantum supremacy baseline with a new generation sunway supercomputer. 2021. https://arxiv.org/abs/2111.01066. Accessed August 1, 2022.
|
[61] |
McCaskey A, Dumitrescu E, Chen M, et al. Validating quantum-classical programming models with tensor network simulations. PLoS ONE, 2018, 13 (12): e0206704. doi: 10.1371/journal.pone.0206704
|
[62] |
Pfeifer R N C, Haegeman J, Verstraete F. Faster identification of optimal contraction sequences for tensor networks. Phys. Rev. E, 2014, 90: 033315. doi: 10.1103/PhysRevE.90.033315
|
[63] |
Vidal G. Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett., 2003, 91: 147902. doi: 10.1103/PhysRevLett.91.147902
|
[64] |
Vidal G. Classical simulation of infinite-size quantum lattice systems in one spatial dimension. Phys. Rev. Lett., 2007, 98: 070201. doi: 10.1103/PhysRevLett.98.070201
|
[65] |
Guo C. QuantumSpins. 2020. https://github.com/guochu/QuantumSpins. Accessed May 17, 2022.
|
[66] |
Gomez A N, Ren M, Urtasun R, et al. The reversible residual network: Backpropagation without storing activations. 2017. https://arxiv.org/abs/1707.04585. Accessed October 21, 2022.
|
[67] |
Chen R T Q, Rubanova Y, Bettencourt J, et al. Neural ordinary differential equations. 2019. https://arxiv.org/abs/1806.07366. Accessed October 21, 2022.
|
[68] |
Jones T, Gacon J. Efficient calculation of gradients in classical simulations of variational quantum algorithms. 2020. https://arxiv.org/abs/2009.02823. Accessed August 1, 2022.
|
[69] |
Bulik I W, Henderson T M, Scuseria G E. Can single-reference coupled cluster theory describe static correlation? J. Chem. Theory Comput., 2015, 11 (7): 3171–3179. doi: 10.1021/acs.jctc.5b00422
|
[70] |
Grimsley H R, Claudino D, Economou S E, et al. Is the Trotterized UCCSD ansatz chemically well-defined? J. Chem. Theory Comput., 2020, 16: 1–6. doi: 10.1021/acs.jctc.9b01083
|
[71] |
Babbush R, McClean J, Wecker D, et al. Chemical basis of Trotter-Suzuki errors in quantum chemistry simulation. Phys. Rev. A, 2015, 91: 022311. doi: 10.1103/PhysRevA.91.022311
|
[72] |
Bravyi S, Gambetta J M, Mezzacapo A, et al. Tapering off qubits to simulate fermionic Hamiltonians. 2017. https://arxiv.org/abs/1701.08213. Accessed August 1, 2022.
|
[73] |
Yordanov Y S, Armaos V, Barnes C H W, et al. Qubit-excitation-based adaptive variational quantum eigensolver. Commun. Phys., 2021, 4 (1): 228. doi: 10.1038/s42005-021-00730-0
|
[74] |
Ryabinkin I G, Yen T C, Genin S N, et al. Qubit coupled cluster method: A systematic approach to quantum chemistry on a quantum computer. J. Chem. Theory Comput., 2018, 14 (12): 6317–6326. doi: 10.1021/acs.jctc.8b00932
|
[75] |
Ryabinkin I G, Lang R A, Genin S N, et al. Iterative qubit coupled cluster approach with efficient screening of generators. J. Chem. Theory Comput., 2020, 16 (2): 1055–1063. doi: 10.1021/acs.jctc.9b01084
|
[76] |
Grimsley H R, Economou S E, Barnes E, et al. An adaptive variational algorithm for exact molecular simulations on a quantum computer. Nat. Commun., 2019, 10: 3007. doi: 10.1038/s41467-019-10988-2
|
[77] |
Krylov A I. Equation-of-motion coupled-cluster methods for open-shell and electronically excited species: The hitchhiker’s guide to Fock space. Annu. Rev. Phys. Chem., 2008, 59: 433–462. doi: 10.1146/annurev.physchem.59.032607.093602
|
[78] |
Ollitrault P J, Kandala A, Chen C F, et al. Quantum equation of motion for computing molecular excitation energies on a noisy quantum processor. Phys. Rev. Res., 2020, 2: 043140. doi: 10.1103/PhysRevResearch.2.043140
|
[79] |
Benedikt U, Auer A A, Jensen F. Optimization of augmentation functions for correlated calculations of spin-spin coupling constants and related properties. J. Chem. Phys., 2008, 129 (6): 064111. doi: 10.1063/1.2962973
|
[For_publication]Supporting_Information_FULL.pdf |