[1] |
Koenker R, Bassett G. Regression quantiles. Econometrica, 1978, 46: 33–50. doi: 10.2307/1913643
|
[2] |
Newey W K, Powell J L. Asymmetric least squares estimation and testing. Econometrica, 1987, 55: 819–847. doi: 10.2307/1911031
|
[3] |
Daouia A, Gijbels I, Stupfler G. Extremiles: A new perspective on asymmetric least squares. Journal of the American Statistical Association, 2019, 114 (527): 1366–1381. doi: 10.1080/01621459.2018.1498348
|
[4] |
Allen D M. The relationship between variable selection and data agumentation and a method for prediction. Technometrics, 1974, 16 (1): 125–127. doi: 10.1080/00401706.1974.10489157
|
[5] |
Mallows C L. Some comments on C p. Technometrics, 2000, 42 (1): 87–94. doi: 10.1080/00401706.1973.10489103
|
[6] |
Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 1974, 19 (6): 716–723. doi: 10.1109/TAC.1974.1100705
|
[7] |
Schwarz G. Estimating the dimension of a model. The Annals of Statistics, 1978, 6 (2): 461–464. doi: 10.1214/aos/1176344136
|
[8] |
Geisser S, Eddy W F. A predictive approach to model selection. Journal of the American Statistical Association, 1979, 74 (365): 153–160. doi: 10.1080/01621459.1979.10481632
|
[9] |
Devroye L, Wagner T. Distribution-free performance bounds for potential function rules. IEEE Transactions on Information Theory, 1979, 25 (5): 601–604. doi: 10.1109/TIT.1979.1056087
|
[10] |
Dietterich T G. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 1998, 10 (7): 1895–1923. doi: 10.1162/089976698300017197
|
[11] |
Candes E, Tao T. The Dantzig selector: Statistical estimation when p is much larger than n. The Annals of Statistics, 2007, 35 (6): 2313–2351. doi: 10.1214/009053606000001523
|
[12] |
Dicker L, Lin X. Parallelism, uniqueness, and large-sample asymptotics for the Dantzig selector. Canadian Journal of Statistics, 2013, 41 (1): 23–35. doi: 10.1002/cjs.11151
|
[13] |
James G M, Radchenko P, Lv J. DASSO: connections between the Dantzig selector and lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2009, 71 (1): 127–142. doi: 10.1111/j.1467-9868.2008.00668.x
|
[14] |
Antoniadis A, Fryzlewicz P, Letué F. The Dantzig selector in Cox’s proportional hazards model. Scandinavian Journal of Statistics, 2010, 37 (4): 531–552. doi: 10.1111/j.1467-9469.2009.00685.x
|
[15] |
Fan J, Lv J. Sure independence screening for ultrahigh dimensional feature space. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2008, 70 (5): 849–911. doi: 10.1111/j.1467-9868.2008.00674.x
|
[16] |
Fan J, Feng Y, Song R. Nonparametric independence screening in sparse ultra-high-dimensional additive models. Journal of the American Statistical Association, 2011, 106 (494): 544–557. doi: 10.1198/jasa.2011.tm09779
|
[17] |
Liu Z, Lin S, Tan M. Sparse support vector machines with L p penalty for biomarker identification. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2008, 7 (1): 100–107. doi: 10.1109/TCBB.2008.17
|
[18] |
Mazumder R, Friedman J H, Hastie T. SparseNet: Coordinate descent with nonconvex penalties. Journal of the American Statistical Association, 2011, 106 (495): 1125–1138. doi: 10.1198/jasa.2011.tm09738
|
[19] |
Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 1996, 58 (1): 267–288. doi: 10.1111/j.2517-6161.1996.tb02080.x
|
[20] |
Fan J, Li R. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 2001, 96 (456): 1348–1360. doi: 10.1198/016214501753382273
|
[21] |
Zhang C H. Nearly unbiased variable selection under minimax concave penalty. The Annals of Statistics, 2010, 38 (2): 894–942. doi: 10.1214/09-AOS729
|
[22] |
Zou H, Hastie T. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2005, 67 (2): 301–320. doi: 10.1111/j.1467-9868.2005.00503.x
|
[23] |
Zou H. The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 2006, 101 (476): 1418–1429. doi: 10.1198/016214506000000735
|
[24] |
Liu Z, Li G. Efficient regularized regression with penalty for variable selection and network construction. Computational and Mathematical Methods in Medicine, 2016, 2016: 3456153. doi: 10.1155/2016/3456153
|
[25] |
Tihonov A N. Solution of incorrectly formulated problems and the regularization method. Soviet Math., 1963, 4: 1035–1038.
|
[26] |
Wang J, Xue L, Zhu L, et al. Estimation for a partial-linear single-index model. The Annals of Statistics, 2010, 38 (1): 246–274. doi: 10.1214/09-AOS712
|
[27] |
West M, Blanchette C, Dressman H, et al. Predicting the clinical status of human breast cancer by using gene expression profiles. Proceedings of the National Academy of Sciences, 2001, 98 (20): 11462–11467. doi: 10.1073/pnas.201162998
|
[28] |
Hastie T, Tibshirani R, Eisen M B, et al. ‘Gene shaving’ as a method for identifying distinct sets of genes with similar expression patterns. Genome Biology, 2000, 1: research0003.1. doi: 10.1186/gb-2000-1-2-research0003
|
[29] |
Hastie T, Tibshirani R, Botstein D, et al. Supervised harvesting of expression trees. Genome Biology, 2001, 2: research0003.1. doi: 10.1186/gb-2001-2-1-research0003
|
[30] |
Segal M S, Dahlquist K D, Conklin B R. Regression approaches for microarray data analysis. Journal of Computational Biology, 2003, 10 (6): 961–980. doi: 10.1089/106652703322756177
|
[31] |
Redmond M, Baveja A. A data-driven software tool for enabling cooperative information sharing among police departments. European Journal of Operational Research, 2002, 141 (3): 660–678. doi: 10.1016/S0377-2217(01)00264-8
|
[1] |
Koenker R, Bassett G. Regression quantiles. Econometrica, 1978, 46: 33–50. doi: 10.2307/1913643
|
[2] |
Newey W K, Powell J L. Asymmetric least squares estimation and testing. Econometrica, 1987, 55: 819–847. doi: 10.2307/1911031
|
[3] |
Daouia A, Gijbels I, Stupfler G. Extremiles: A new perspective on asymmetric least squares. Journal of the American Statistical Association, 2019, 114 (527): 1366–1381. doi: 10.1080/01621459.2018.1498348
|
[4] |
Allen D M. The relationship between variable selection and data agumentation and a method for prediction. Technometrics, 1974, 16 (1): 125–127. doi: 10.1080/00401706.1974.10489157
|
[5] |
Mallows C L. Some comments on C p. Technometrics, 2000, 42 (1): 87–94. doi: 10.1080/00401706.1973.10489103
|
[6] |
Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 1974, 19 (6): 716–723. doi: 10.1109/TAC.1974.1100705
|
[7] |
Schwarz G. Estimating the dimension of a model. The Annals of Statistics, 1978, 6 (2): 461–464. doi: 10.1214/aos/1176344136
|
[8] |
Geisser S, Eddy W F. A predictive approach to model selection. Journal of the American Statistical Association, 1979, 74 (365): 153–160. doi: 10.1080/01621459.1979.10481632
|
[9] |
Devroye L, Wagner T. Distribution-free performance bounds for potential function rules. IEEE Transactions on Information Theory, 1979, 25 (5): 601–604. doi: 10.1109/TIT.1979.1056087
|
[10] |
Dietterich T G. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 1998, 10 (7): 1895–1923. doi: 10.1162/089976698300017197
|
[11] |
Candes E, Tao T. The Dantzig selector: Statistical estimation when p is much larger than n. The Annals of Statistics, 2007, 35 (6): 2313–2351. doi: 10.1214/009053606000001523
|
[12] |
Dicker L, Lin X. Parallelism, uniqueness, and large-sample asymptotics for the Dantzig selector. Canadian Journal of Statistics, 2013, 41 (1): 23–35. doi: 10.1002/cjs.11151
|
[13] |
James G M, Radchenko P, Lv J. DASSO: connections between the Dantzig selector and lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2009, 71 (1): 127–142. doi: 10.1111/j.1467-9868.2008.00668.x
|
[14] |
Antoniadis A, Fryzlewicz P, Letué F. The Dantzig selector in Cox’s proportional hazards model. Scandinavian Journal of Statistics, 2010, 37 (4): 531–552. doi: 10.1111/j.1467-9469.2009.00685.x
|
[15] |
Fan J, Lv J. Sure independence screening for ultrahigh dimensional feature space. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2008, 70 (5): 849–911. doi: 10.1111/j.1467-9868.2008.00674.x
|
[16] |
Fan J, Feng Y, Song R. Nonparametric independence screening in sparse ultra-high-dimensional additive models. Journal of the American Statistical Association, 2011, 106 (494): 544–557. doi: 10.1198/jasa.2011.tm09779
|
[17] |
Liu Z, Lin S, Tan M. Sparse support vector machines with L p penalty for biomarker identification. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2008, 7 (1): 100–107. doi: 10.1109/TCBB.2008.17
|
[18] |
Mazumder R, Friedman J H, Hastie T. SparseNet: Coordinate descent with nonconvex penalties. Journal of the American Statistical Association, 2011, 106 (495): 1125–1138. doi: 10.1198/jasa.2011.tm09738
|
[19] |
Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 1996, 58 (1): 267–288. doi: 10.1111/j.2517-6161.1996.tb02080.x
|
[20] |
Fan J, Li R. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 2001, 96 (456): 1348–1360. doi: 10.1198/016214501753382273
|
[21] |
Zhang C H. Nearly unbiased variable selection under minimax concave penalty. The Annals of Statistics, 2010, 38 (2): 894–942. doi: 10.1214/09-AOS729
|
[22] |
Zou H, Hastie T. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2005, 67 (2): 301–320. doi: 10.1111/j.1467-9868.2005.00503.x
|
[23] |
Zou H. The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 2006, 101 (476): 1418–1429. doi: 10.1198/016214506000000735
|
[24] |
Liu Z, Li G. Efficient regularized regression with penalty for variable selection and network construction. Computational and Mathematical Methods in Medicine, 2016, 2016: 3456153. doi: 10.1155/2016/3456153
|
[25] |
Tihonov A N. Solution of incorrectly formulated problems and the regularization method. Soviet Math., 1963, 4: 1035–1038.
|
[26] |
Wang J, Xue L, Zhu L, et al. Estimation for a partial-linear single-index model. The Annals of Statistics, 2010, 38 (1): 246–274. doi: 10.1214/09-AOS712
|
[27] |
West M, Blanchette C, Dressman H, et al. Predicting the clinical status of human breast cancer by using gene expression profiles. Proceedings of the National Academy of Sciences, 2001, 98 (20): 11462–11467. doi: 10.1073/pnas.201162998
|
[28] |
Hastie T, Tibshirani R, Eisen M B, et al. ‘Gene shaving’ as a method for identifying distinct sets of genes with similar expression patterns. Genome Biology, 2000, 1: research0003.1. doi: 10.1186/gb-2000-1-2-research0003
|
[29] |
Hastie T, Tibshirani R, Botstein D, et al. Supervised harvesting of expression trees. Genome Biology, 2001, 2: research0003.1. doi: 10.1186/gb-2001-2-1-research0003
|
[30] |
Segal M S, Dahlquist K D, Conklin B R. Regression approaches for microarray data analysis. Journal of Computational Biology, 2003, 10 (6): 961–980. doi: 10.1089/106652703322756177
|
[31] |
Redmond M, Baveja A. A data-driven software tool for enabling cooperative information sharing among police departments. European Journal of Operational Research, 2002, 141 (3): 660–678. doi: 10.1016/S0377-2217(01)00264-8
|