ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Physics 18 January 2023

Twisted plasma waves driven by twisted ponderomotive force

Cite this:
https://doi.org/10.52396/JUSTC-2022-0080
More Information
  • Author Bio:

    Yin Shi received his Ph.D. degree from Shanghai Institute of Optics and Fine Mechanics (SIOM), CAS, in 2015. He is currently a Special Researcher at the University of Science and Technology of China. His research focuses on laser plasma interactions and high-energy-density physics

  • Corresponding author: E-mail: shiyin@ustc.edu.cn
  • Received Date: 18 May 2022
  • Accepted Date: 13 September 2022
  • Available Online: 18 January 2023
  • We present the results of twisted plasma waves driven by twisted ponderomotive force. With the beating of two, co-propagating, Laguerre-Gaussian (LG) orbital angular momentum (OAM) laser pulses with different frequencies and also different twist indices, we can obtain the twisted ponderomotive force. Three-dimensional particle-in-cell simulations are used to demonstrate the twisted plasma waves driven by lasers. The twisted plasma waves have an electron density perturbation with a helical rotating structure. Different from the predictions of the linear fluid theory, the simulation results show a nonlinear rotating current and a static axial magnetic field. Along with the rotating current is the axial OAM carried by particles in the twisted plasma waves. A detailed theoretical analysis of twisted plasma waves is also given.
    Twisted plasma waves driven by twisted ponderomotive force. (a) A 3D view of the electron density deviation in the plasma wave driven by twisted ponderomotive force, simulated using the EPOCH PIC code. (b) The distribution of longitudinal magnetic field at z = 0.
    We present the results of twisted plasma waves driven by twisted ponderomotive force. With the beating of two, co-propagating, Laguerre-Gaussian (LG) orbital angular momentum (OAM) laser pulses with different frequencies and also different twist indices, we can obtain the twisted ponderomotive force. Three-dimensional particle-in-cell simulations are used to demonstrate the twisted plasma waves driven by lasers. The twisted plasma waves have an electron density perturbation with a helical rotating structure. Different from the predictions of the linear fluid theory, the simulation results show a nonlinear rotating current and a static axial magnetic field. Along with the rotating current is the axial OAM carried by particles in the twisted plasma waves. A detailed theoretical analysis of twisted plasma waves is also given.
    • The plasma waves can be in a twisted mode when it is driven by twisted ponderomotive force.
    • With beating of co-propagating Laguerre-Gaussian (LG) orbital angular momentum (OAM) laser beams with different frequencies and also different twist indices, twisted ponderomotive force can be got.
    • A new magnetic field generation mechanism in underdense plasmas due to plasma waves is clarified in this study.

  • loading
  • [1]
    Esarey E, Schroeder C B, Leemans W P. Physics of laser-driven plasma-based electron accelerators. Reviews of Modern Physics, 2009, 81: 1229–1285. doi: 10.1103/revmodphys.81.1229
    [2]
    Ali S, Davies J R, Mendonca J T. Inverse Faraday effect with linearly polarized laser pulses. Physical Review Letters, 2010, 105: 035001. doi: 10.1103/physrevlett.105.035001
    [3]
    Haines M G. Generation of an axial magnetic field from photon spin. Physical Review Letters, 2001, 87: 135005. doi: 10.1103/physrevlett.87.135005
    [4]
    Najmudin Z, Tatarakis M, Pukhov A, et al. Measurements of the inverse Faraday effect from relativistic laser interactions with an underdense plasma. Physical Review Letters, 2001, 87: 215004. doi: 10.1103/physrevlett.87.215004
    [5]
    Sheng Z M, Meyer-ter-Vehn J. Inverse Faraday effect and propagation of circularly polarized intense laser beams in plasmas. Physical Review E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1996, 54: 1833–1842. doi: 10.1103/physreve.54.1833
    [6]
    Allen L, Beijersbergen M W, Spreeuw R J, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A, Atomic, Molecular, and Optical Physics, 1992, 45: 8185–8189. doi: 10.1103/physreva.45.8185
    [7]
    Yao A M, Padgett M J. Orbital angular momentum: Origins, behavior and applications. Advances in Optics and Photonics, 2011, 3: 161. doi: 10.1364/aop.3.000161
    [8]
    Shi Y, Shen B, Zhang L, et al. Light fan driven by a relativistic laser pulse. Physical Review Letters, 2014, 112: 235001. doi: 10.1103/PhysRevLett.112.235001
    [9]
    Vieira J, Trines R M, Alves E P, et al. High orbital angular momentum harmonic generation. Physical Review Letters, 2016, 117: 265001. doi: 10.1103/PhysRevLett.117.265001
    [10]
    Zhang L, Shen B, Zhang X, et al. Deflection of a reflected intense vortex laser beam. Physical Review Letters, 2016, 117: 113904. doi: 10.1103/PhysRevLett.117.113904
    [11]
    Zhang X, Shen B, Shi Y, et al. Generation of intense high-order vortex harmonics. Physical Review Letters, 2015, 114: 173901. doi: 10.1103/PhysRevLett.114.173901
    [12]
    Vieira J, Mendonça J T. Nonlinear laser driven donut wakefields for positron and electron acceleration. Physical Review Letters, 2014, 112: 215001. doi: 10.1103/PhysRevLett.112.215001
    [13]
    Wang W, Shen B, Zhang X, et al. Hollow screw-like drill in plasma using an intense Laguerre–Gaussian laser. Scientific Reports, 2015, 5: 8274. doi: 10.1038/srep08274
    [14]
    Zhang X, Shen B, Zhang L, et al. Proton acceleration in underdense plasma by ultraintense Laguerre-Gaussian laser pulse. New Journal of Physics, 2014, 16: 123051. doi: 10.1088/1367-2630/16/12/123051
    [15]
    Vieira J, Mendonça J T, Quéré F. Optical control of the topology of laser-plasma accelerators. Physical Review Letters, 2018, 121: 054801. doi: 10.1103/PhysRevLett.121.054801
    [16]
    Longman A, Fedosejevs R. Mode conversion efficiency to Laguerre-Gaussian OAM modes using spiral phase optics. Optics Express, 2017, 25: 17382–17392. doi: 10.1364/OE.25.017382
    [17]
    Ju L B, Zhou C T, Jiang K, et al. Manipulating the topological structure of ultrarelativistic electron beams using Laguerre-Gaussian laser pulse. New Journal of Physics, 2018, 20: 063004. doi: 10.1088/1367-2630/aac68a
    [18]
    Zhu X L, Chen M, Weng S M, et al. Single-cycle terawatt twisted-light pulses at midinfrared wavelengths above 10 µm. Physical Review Applied, 2019, 12: 054024. doi: 10.1103/PhysRevApplied.12.054024
    [19]
    Tikhonchuk V T, Korneev P, Dmitriev E, et al. Numerical study of momentum and energy transfer in the interaction of a laser pulse carrying orbital angular momentum with electrons. High Energy Density Physics, 2020, 37: 100863. doi: 10.1016/j.hedp.2020.100863
    [20]
    Nuter R, Korneev P, Thiele I, et al. Plasma solenoid driven by a laser beam carrying an orbital angular momentum. Physical Review E, 2018, 98: 033211. doi: 10.1103/PhysRevE.98.033211
    [21]
    Blackman D R, Nuter R, Korneev P, et al. Nonlinear Landau damping of plasma waves with orbital angular momentum. Physical Review E, 2020, 102: 033208. doi: 10.1103/PhysRevE.102.033208
    [22]
    Longman A, Fedosejevs R. Kilo-Tesla axial magnetic field generation with high intensity spin and orbital angular momentum beams. Physical Review Research, 2021, 3: 043180. doi: 10.1103/PhysRevResearch.3.043180
    [23]
    Leblanc A, Denoeud A, Chopineau L, et al. Plasma holograms for ultrahigh-intensity optics. Nature Physics, 2017, 13: 440–443. doi: 10.1038/nphys4007
    [24]
    Denoeud A, Chopineau L, Leblanc A, et al. Interaction of ultraintense laser vortices with plasma mirrors. Physical Review Letters, 2017, 118: 033902. doi: 10.1103/PhysRevLett.118.033902
    [25]
    Longman A, Salgado C, Zeraouli G, et al. Off-axis spiral phase mirrors for generating high-intensity optical vortices. Optics Letters, 2020, 45: 2187–2190. doi: 10.1364/OL.387363
    [26]
    Bae J Y, Jeon C, Pae K H, et al. Generation of low-order Laguerre-Gaussian beams using hybrid-machined reflective spiral phase plates for intense laser-plasma interactions. Results in Physics, 2020, 19: 103499. doi: 10.1016/j.rinp.2020.103499
    [27]
    Aboushelbaya R, Glize K, Savin A F, et al. Measuring the orbital angular momentum of high-power laser pulses. Physics of Plasmas, 2020, 27: 053107. doi: 10.1063/5.0005140
    [28]
    Zeng X, Zheng S, Cai Y, et al. Generation and imaging of a tunable ultrafast intensity-rotating optical field with a cycle down to femtosecond region. High Power Laser Science and Engineering, 2020, 8: e3. doi: 10.1017/hpl.2020.1
    [29]
    Shi Y, Vieira J, Trines R M G M, et al. Magnetic field generation in plasma waves driven by copropagating intense twisted lasers. Physical Review Letters, 2018, 121: 145002. doi: 10.1103/PhysRevLett.121.145002
    [30]
    Blackman D R, Nuter R, Korneev P, et al. Kinetic plasma waves carrying orbital angular momentum. Physical Review E, 2019, 100: 013204. doi: 10.1103/PhysRevE.100.013204
    [31]
    Blackman D R, Nuter R, Korneev P, et al. Twisted kinetic plasma waves. Journal of Russian Laser Research, 2019, 40: 419–428. doi: 10.1007/s10946-019-09822-3
    [32]
    Arber T D, Bennett K, Brady C S, et al. Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Physics and Controlled Fusion, 2015, 57: 113001. doi: 10.1088/0741-3335/57/11/113001
    [33]
    Fedele R, de Angelis U, Katsouleas T. Generation of radial fields in the beat-wave accelerator for Gaussian pump profiles. Physical Review A, General Physics, 1986, 33: 4412–4414. doi: 10.1103/PhysRevA.33.4412
    [34]
    Gorbunov L, Mora P, Antonsen T M Jr. Magnetic field of a plasma wake driven by a laser pulse. Physical Review Letters, 1996, 76: 2495–2498. doi: 10.1103/PhysRevLett.76.2495
    [35]
    Gorbunov L M, Mora P, Antonsen T M. Quasistatic magnetic field generated by a short laser pulse in an underdense plasma. Physics of Plasmas, 1997, 4: 4358–4368. doi: 10.1063/1.872598
    [36]
    Dawson J M. Nonlinear electron oscillations in a cold plasma. Physical Review, 1959, 113: 383–387. doi: 10.1103/PhysRev.113.383
    [37]
    Cowley J, Thornton C, Arran C, et al. Excitation and control of plasma wakefields by multiple laser pulses. Physical Review Letters, 2017, 119: 044802. doi: 10.1103/PhysRevLett.119.044802
    [38]
    EPOCH Particle-In-Cell code for plasma simulations. https://github.com/epochpic/epochpic.github.io. Accessed April 10, 2022.
  • 加载中

Catalog

    Figure  1.  Structure of the ponderomotive potential $\Phi_\text{pond}$ (in a. u.) of one LG laser pulse (a) and two beating LG laser pulses (b) in transverse plane ($ y $-$ z $). The ponderomotive force ${\boldsymbol F}_\text{pond} = - \nabla \Phi_\text{pond}$ has an azimuthal component only for two beating waves.

    Figure  2.  3D PIC simulation results of electric field and fluid velocity distribution at transverse plane ($ y $-$ z $ plane) at the centre of simulation box ($ x $ = 15 μm) and the time 320 fs after the laser has passed by. (a), (b), and (c) show transverse slices of $ E_x $, $ E_{\theta} $, and $ E_r $.

    Figure  3.  PIC results of transverse profile of (a) electron density perturbation $\delta n_{\rm{e}}$, (c) axial magnetic field $ B_x $ and (e) azimuthal magnetic field $ B_{\theta} $ at the centre of simulation box ($ x $ = 15 μm) and the time 320 fs after the laser has passed by. The dashed lines shown in the transverse slices are the line outs used to plot the graphics on the right. The plots on the right, (b), (d), and (f), are line outs from the slices plotted against the position along the line outs $ d $ plotted in (a), (c), and (e). $ d $ is the coordinate along the dashed lines. Solid lines in (b), (d) and (f) are theory predictions, for the same situation considered in Table 1.

    Figure  4.  PIC results of transverse profile of (a) electron density perturbation $ \delta n_e $, (b) axial magnetic field $ B_x $ and (c) azimuthal magnetic field $ B_{\theta} $ at the centre of simulation box ($ x $ = 15 μm) and the time 320 fs after the laser has passed by.

    [1]
    Esarey E, Schroeder C B, Leemans W P. Physics of laser-driven plasma-based electron accelerators. Reviews of Modern Physics, 2009, 81: 1229–1285. doi: 10.1103/revmodphys.81.1229
    [2]
    Ali S, Davies J R, Mendonca J T. Inverse Faraday effect with linearly polarized laser pulses. Physical Review Letters, 2010, 105: 035001. doi: 10.1103/physrevlett.105.035001
    [3]
    Haines M G. Generation of an axial magnetic field from photon spin. Physical Review Letters, 2001, 87: 135005. doi: 10.1103/physrevlett.87.135005
    [4]
    Najmudin Z, Tatarakis M, Pukhov A, et al. Measurements of the inverse Faraday effect from relativistic laser interactions with an underdense plasma. Physical Review Letters, 2001, 87: 215004. doi: 10.1103/physrevlett.87.215004
    [5]
    Sheng Z M, Meyer-ter-Vehn J. Inverse Faraday effect and propagation of circularly polarized intense laser beams in plasmas. Physical Review E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1996, 54: 1833–1842. doi: 10.1103/physreve.54.1833
    [6]
    Allen L, Beijersbergen M W, Spreeuw R J, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A, Atomic, Molecular, and Optical Physics, 1992, 45: 8185–8189. doi: 10.1103/physreva.45.8185
    [7]
    Yao A M, Padgett M J. Orbital angular momentum: Origins, behavior and applications. Advances in Optics and Photonics, 2011, 3: 161. doi: 10.1364/aop.3.000161
    [8]
    Shi Y, Shen B, Zhang L, et al. Light fan driven by a relativistic laser pulse. Physical Review Letters, 2014, 112: 235001. doi: 10.1103/PhysRevLett.112.235001
    [9]
    Vieira J, Trines R M, Alves E P, et al. High orbital angular momentum harmonic generation. Physical Review Letters, 2016, 117: 265001. doi: 10.1103/PhysRevLett.117.265001
    [10]
    Zhang L, Shen B, Zhang X, et al. Deflection of a reflected intense vortex laser beam. Physical Review Letters, 2016, 117: 113904. doi: 10.1103/PhysRevLett.117.113904
    [11]
    Zhang X, Shen B, Shi Y, et al. Generation of intense high-order vortex harmonics. Physical Review Letters, 2015, 114: 173901. doi: 10.1103/PhysRevLett.114.173901
    [12]
    Vieira J, Mendonça J T. Nonlinear laser driven donut wakefields for positron and electron acceleration. Physical Review Letters, 2014, 112: 215001. doi: 10.1103/PhysRevLett.112.215001
    [13]
    Wang W, Shen B, Zhang X, et al. Hollow screw-like drill in plasma using an intense Laguerre–Gaussian laser. Scientific Reports, 2015, 5: 8274. doi: 10.1038/srep08274
    [14]
    Zhang X, Shen B, Zhang L, et al. Proton acceleration in underdense plasma by ultraintense Laguerre-Gaussian laser pulse. New Journal of Physics, 2014, 16: 123051. doi: 10.1088/1367-2630/16/12/123051
    [15]
    Vieira J, Mendonça J T, Quéré F. Optical control of the topology of laser-plasma accelerators. Physical Review Letters, 2018, 121: 054801. doi: 10.1103/PhysRevLett.121.054801
    [16]
    Longman A, Fedosejevs R. Mode conversion efficiency to Laguerre-Gaussian OAM modes using spiral phase optics. Optics Express, 2017, 25: 17382–17392. doi: 10.1364/OE.25.017382
    [17]
    Ju L B, Zhou C T, Jiang K, et al. Manipulating the topological structure of ultrarelativistic electron beams using Laguerre-Gaussian laser pulse. New Journal of Physics, 2018, 20: 063004. doi: 10.1088/1367-2630/aac68a
    [18]
    Zhu X L, Chen M, Weng S M, et al. Single-cycle terawatt twisted-light pulses at midinfrared wavelengths above 10 µm. Physical Review Applied, 2019, 12: 054024. doi: 10.1103/PhysRevApplied.12.054024
    [19]
    Tikhonchuk V T, Korneev P, Dmitriev E, et al. Numerical study of momentum and energy transfer in the interaction of a laser pulse carrying orbital angular momentum with electrons. High Energy Density Physics, 2020, 37: 100863. doi: 10.1016/j.hedp.2020.100863
    [20]
    Nuter R, Korneev P, Thiele I, et al. Plasma solenoid driven by a laser beam carrying an orbital angular momentum. Physical Review E, 2018, 98: 033211. doi: 10.1103/PhysRevE.98.033211
    [21]
    Blackman D R, Nuter R, Korneev P, et al. Nonlinear Landau damping of plasma waves with orbital angular momentum. Physical Review E, 2020, 102: 033208. doi: 10.1103/PhysRevE.102.033208
    [22]
    Longman A, Fedosejevs R. Kilo-Tesla axial magnetic field generation with high intensity spin and orbital angular momentum beams. Physical Review Research, 2021, 3: 043180. doi: 10.1103/PhysRevResearch.3.043180
    [23]
    Leblanc A, Denoeud A, Chopineau L, et al. Plasma holograms for ultrahigh-intensity optics. Nature Physics, 2017, 13: 440–443. doi: 10.1038/nphys4007
    [24]
    Denoeud A, Chopineau L, Leblanc A, et al. Interaction of ultraintense laser vortices with plasma mirrors. Physical Review Letters, 2017, 118: 033902. doi: 10.1103/PhysRevLett.118.033902
    [25]
    Longman A, Salgado C, Zeraouli G, et al. Off-axis spiral phase mirrors for generating high-intensity optical vortices. Optics Letters, 2020, 45: 2187–2190. doi: 10.1364/OL.387363
    [26]
    Bae J Y, Jeon C, Pae K H, et al. Generation of low-order Laguerre-Gaussian beams using hybrid-machined reflective spiral phase plates for intense laser-plasma interactions. Results in Physics, 2020, 19: 103499. doi: 10.1016/j.rinp.2020.103499
    [27]
    Aboushelbaya R, Glize K, Savin A F, et al. Measuring the orbital angular momentum of high-power laser pulses. Physics of Plasmas, 2020, 27: 053107. doi: 10.1063/5.0005140
    [28]
    Zeng X, Zheng S, Cai Y, et al. Generation and imaging of a tunable ultrafast intensity-rotating optical field with a cycle down to femtosecond region. High Power Laser Science and Engineering, 2020, 8: e3. doi: 10.1017/hpl.2020.1
    [29]
    Shi Y, Vieira J, Trines R M G M, et al. Magnetic field generation in plasma waves driven by copropagating intense twisted lasers. Physical Review Letters, 2018, 121: 145002. doi: 10.1103/PhysRevLett.121.145002
    [30]
    Blackman D R, Nuter R, Korneev P, et al. Kinetic plasma waves carrying orbital angular momentum. Physical Review E, 2019, 100: 013204. doi: 10.1103/PhysRevE.100.013204
    [31]
    Blackman D R, Nuter R, Korneev P, et al. Twisted kinetic plasma waves. Journal of Russian Laser Research, 2019, 40: 419–428. doi: 10.1007/s10946-019-09822-3
    [32]
    Arber T D, Bennett K, Brady C S, et al. Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Physics and Controlled Fusion, 2015, 57: 113001. doi: 10.1088/0741-3335/57/11/113001
    [33]
    Fedele R, de Angelis U, Katsouleas T. Generation of radial fields in the beat-wave accelerator for Gaussian pump profiles. Physical Review A, General Physics, 1986, 33: 4412–4414. doi: 10.1103/PhysRevA.33.4412
    [34]
    Gorbunov L, Mora P, Antonsen T M Jr. Magnetic field of a plasma wake driven by a laser pulse. Physical Review Letters, 1996, 76: 2495–2498. doi: 10.1103/PhysRevLett.76.2495
    [35]
    Gorbunov L M, Mora P, Antonsen T M. Quasistatic magnetic field generated by a short laser pulse in an underdense plasma. Physics of Plasmas, 1997, 4: 4358–4368. doi: 10.1063/1.872598
    [36]
    Dawson J M. Nonlinear electron oscillations in a cold plasma. Physical Review, 1959, 113: 383–387. doi: 10.1103/PhysRev.113.383
    [37]
    Cowley J, Thornton C, Arran C, et al. Excitation and control of plasma wakefields by multiple laser pulses. Physical Review Letters, 2017, 119: 044802. doi: 10.1103/PhysRevLett.119.044802
    [38]
    EPOCH Particle-In-Cell code for plasma simulations. https://github.com/epochpic/epochpic.github.io. Accessed April 10, 2022.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return