Extended t-process is robust to outliers and inherits many attractive properties from the Gaussian process. In this paper, we provide a function-on-function nonparametric random-effects model using extended t-process priors in which we consider heterogeneity of individual effect, flexible mean function, nonparametric covariance function and robustness. A likelihood-based estimation procedure is constructed to estimate parameters involved in the model. Information consistency for the parameter estimation is provided. Simulation studies and a real data example are further investigated to evaluate the performance of the developed procedures.
Extended t-process is robust to outliers and inherits many attractive properties from the Gaussian process. In this paper, we provide a function-on-function nonparametric random-effects model using extended t-process priors in which we consider heterogeneity of individual effect, flexible mean function, nonparametric covariance function and robustness. A likelihood-based estimation procedure is constructed to estimate parameters involved in the model. Information consistency for the parameter estimation is provided. Simulation studies and a real data example are further investigated to evaluate the performance of the developed procedures.
[1] |
Wang Z, Noh M, Lee Y, et al. A general robust t-process regression model. Computational Statistics and Data Analysis, 2021, 154: 107093. doi: 10.1016/j.csda.2020.107093
|
[2] |
Yuan M, Cai T T. A reproducing kernel Hilbert space approach to functional linear regression. The Annals of Statistics, 2010, 38 (6): 3412–3444. doi: 10.1214/09-AOS772
|
[3] |
Wang Z, Shi J Q, Lee Y. Extended t-process regression models. Journal of Statistical Planning and Inference, 2017, 189: 38–60. doi: 10.1016/j.jspi.2017.05.006
|
[4] |
Seeger M W, Kakade S M, Foster D P. Information consistency of nonparametric Gaussian process methods. IEEE Transactions on Information Theory, 2008, 54: 2376–2382. doi: 10.1109/TIT.2007.915707
|
[5] |
Zhang Y, Yeung D Y. Multi-task learning using generalized t-process. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. Cambridge, MA: PMLR, 2010: 964–971.
|
[6] |
Yao F, Müller H G, Wang J L. Functional data analysis for sparse longitudinal data. Journal of the American Statistical Association, 2005, 100: 577–590. doi: 10.1198/016214504000001745
|
[7] |
Wang B, Shi J Q. Generalized gaussian process regression model for non-gaussian functional data. Journal of the American Statistical Association, 2014, 109: 1123–1133. doi: 10.1080/01621459.2014.889021
|
[8] |
Shi J Q, Choi T. Gaussian Process Regression Analysis for Functional Data. Boca Raton, FL: CRC Press, 2011
|
[9] |
Wang Z, Ding H, Chen Z, et al. Nonparametric random effects functional regression model using Gaussian process priors. Statistica Sinica, 2021, 31: 53–78. doi: 10.5705/ss.202018.0296
|
[10] |
Yu S, Tresp V, Yu K. Robust multi-task learning with t-processes. In: Proceedings of the 24th International Conference on Machine Learning. New York: ACM, 2007: 1103–1110.
|
[11] |
Berlinet A, Thomas-Agnan C. Reproducing Kernel Hilbert Spaces in Probability and Statistics. Berlin: Springer Science & Business Media, 2011.
|
[12] |
Malfait N, Ramsay J O. The historical functional linear model. Canadian Journal of Statistics, 2003, 31: 115–128. doi: 10.2307/3316063
|
[13] |
Sun X, Du P, Wang X, et al. Optimal penalized function-on-function regression under a reproducing kernel Hilbert space framework. Journal of the American Statistical Association, 2018, 113 (524): 1601–1611. doi: 10.1080/01621459.2017.1356320
|
[14] |
Shah A, Wilson A, Ghahramani Z. Student-t processes as alternatives to Gaussian processes. In: Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics. Cambridge, MA: PMLR, 2014: 877–885.
|
[15] |
Gervini D. Dynamic retrospective regression for functional data. Technometrics, 2015, 57: 26–34. doi: 10.1080/00401706.2013.879076
|
[16] |
Ramsay J O, Silverman B W. Functional Data Analysis. New York: Springer, 2005.
|
[17] |
Ramsay J O, Dalzell C. Some tools for functional data analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 1991, 53: 539–572. doi: 10.1111/j.2517-6161.1991.tb01844.x
|
[18] |
Yao F, Müller H G, Wang J L. Functional linear regression analysis for longitudinal data. The Annals of Statistics, 2005, 33: 2873–2903. doi: 10.1214/009053605000000660
|
[1] |
Wang Z, Noh M, Lee Y, et al. A general robust t-process regression model. Computational Statistics and Data Analysis, 2021, 154: 107093. doi: 10.1016/j.csda.2020.107093
|
[2] |
Yuan M, Cai T T. A reproducing kernel Hilbert space approach to functional linear regression. The Annals of Statistics, 2010, 38 (6): 3412–3444. doi: 10.1214/09-AOS772
|
[3] |
Wang Z, Shi J Q, Lee Y. Extended t-process regression models. Journal of Statistical Planning and Inference, 2017, 189: 38–60. doi: 10.1016/j.jspi.2017.05.006
|
[4] |
Seeger M W, Kakade S M, Foster D P. Information consistency of nonparametric Gaussian process methods. IEEE Transactions on Information Theory, 2008, 54: 2376–2382. doi: 10.1109/TIT.2007.915707
|
[5] |
Zhang Y, Yeung D Y. Multi-task learning using generalized t-process. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. Cambridge, MA: PMLR, 2010: 964–971.
|
[6] |
Yao F, Müller H G, Wang J L. Functional data analysis for sparse longitudinal data. Journal of the American Statistical Association, 2005, 100: 577–590. doi: 10.1198/016214504000001745
|
[7] |
Wang B, Shi J Q. Generalized gaussian process regression model for non-gaussian functional data. Journal of the American Statistical Association, 2014, 109: 1123–1133. doi: 10.1080/01621459.2014.889021
|
[8] |
Shi J Q, Choi T. Gaussian Process Regression Analysis for Functional Data. Boca Raton, FL: CRC Press, 2011
|
[9] |
Wang Z, Ding H, Chen Z, et al. Nonparametric random effects functional regression model using Gaussian process priors. Statistica Sinica, 2021, 31: 53–78. doi: 10.5705/ss.202018.0296
|
[10] |
Yu S, Tresp V, Yu K. Robust multi-task learning with t-processes. In: Proceedings of the 24th International Conference on Machine Learning. New York: ACM, 2007: 1103–1110.
|
[11] |
Berlinet A, Thomas-Agnan C. Reproducing Kernel Hilbert Spaces in Probability and Statistics. Berlin: Springer Science & Business Media, 2011.
|
[12] |
Malfait N, Ramsay J O. The historical functional linear model. Canadian Journal of Statistics, 2003, 31: 115–128. doi: 10.2307/3316063
|
[13] |
Sun X, Du P, Wang X, et al. Optimal penalized function-on-function regression under a reproducing kernel Hilbert space framework. Journal of the American Statistical Association, 2018, 113 (524): 1601–1611. doi: 10.1080/01621459.2017.1356320
|
[14] |
Shah A, Wilson A, Ghahramani Z. Student-t processes as alternatives to Gaussian processes. In: Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics. Cambridge, MA: PMLR, 2014: 877–885.
|
[15] |
Gervini D. Dynamic retrospective regression for functional data. Technometrics, 2015, 57: 26–34. doi: 10.1080/00401706.2013.879076
|
[16] |
Ramsay J O, Silverman B W. Functional Data Analysis. New York: Springer, 2005.
|
[17] |
Ramsay J O, Dalzell C. Some tools for functional data analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 1991, 53: 539–572. doi: 10.1111/j.2517-6161.1991.tb01844.x
|
[18] |
Yao F, Müller H G, Wang J L. Functional linear regression analysis for longitudinal data. The Annals of Statistics, 2005, 33: 2873–2903. doi: 10.1214/009053605000000660
|