[1] |
Huang Y, Peng P, Jin Y, et al. Domain adaptive attention learning for unsupervised person re-identification. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34: 11069–11076. doi: 10.1609/aaai.v34i07.6762
|
[2] |
Ge Y, Zhu F, Chen D, et al. Self-paced contrastive learning with hybrid memory for domain adaptive object re-ID. In: NIPS’20: 34th International Conference on Neural Information Processing Systems. BC, Canada: Curran Associates Inc, 2020: 11309–11321.
|
[3] |
Chen H, Lagadec B, Brémond F. ICE: Inter-instance contrastive encoding for unsupervised person re-identification. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, Canada: IEEE, 2021: 14940–14949.
|
[4] |
Wang M, Lai B, Huang J, et al. Camera-aware proxies for unsupervised person re-identification. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35 (4): 2764–2772. doi: 10.1609/aaai.v35i4.16381
|
[5] |
Ge Y, Chen D, Li H. Mutual mean-teaching: Pseudo label refinery for unsupervised domain adaptation on person re-identification. 2020. https://doi.org/10.48550/arXiv.2001.01526. Accessed December 3, 2021
|
[6] |
Zheng K, Lan C, Zeng W, et al. Exploiting sample uncertainty for domain adaptive person re-identification. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35 (4): 3538–3546. doi: 10.1609/aaai.v35i4.16468
|
[7] |
Lin Y, Xie L, Wu Y, et al. Unsupervised person re-identification via softened similarity learning. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE, 2020: 3387–3396.
|
[8] |
Tian J, Tang Q, Li R, et al. A camera identity-guided distribution consistency method for unsupervised multi-target domain person re-identification. ACM Transactions on Intelligent Systems and Technology, 2021, 12 (4): 1–18. doi: 10.1145/3454130
|
[9] |
Xuan S, Zhang S. Intra-inter camera similarity for unsupervised person re-identification. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE, 2021: 11921–11930.
|
[10] |
Zheng L, Shen L, Tian L, et al. Scalable person re-identification: A benchmark. In: 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE, 2015: 1116–1124.
|
[11] |
Ristani E, Solera F, Zou R, et al. Performance measures and a data set for multi-target, multi-camera tracking. In: Hua G, Jégou H, editors. Computer Vision–ECCV 2016 Workshops. Cham: Springer International Publishing, 2016: 17–35.
|
[12] |
Song L, Wang C, Zhang L, et al. Unsupervised domain adaptive re-identification: Theory and practice. Pattern Recognition, 2020, 102: 107173. doi: 10.1016/j.patcog.2019.107173
|
[13] |
Fu Y, Wei Y, Wang G, et al. Self-similarity grouping: A simple unsupervised cross domain adaptation approach for person re-identification. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, South Korea: IEEE, 2019: 6111–6120.
|
[14] |
Lin Y, Dong X, Zheng L, et al. A bottom-up clustering approach to unsupervised person re-identification. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33 (1): 8738–8745. doi: 10.1609/aaai.v33i01.33018738
|
[15] |
Zeng K, Ning M, Wang Y, et al. Hierarchical clustering with hard-batch triplet loss for person re-identification. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE, 2020: 13654–13662.
|
[16] |
Zhang X, Cao J, Shen C, et al. Self-training with progressive augmentation for unsupervised cross-domain person re-identification. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, South Korea: IEEE, 2019: 8221–8230.
|
[17] |
Yu H X, Zheng W S, Wu A, et al. Unsupervised person re-identification by soft multilabel learning. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE, 2019: 2143–2152.
|
[18] |
Wang D, Zhang S. Unsupervised person re-identification via multi-label classification. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE, 2020: 10978–10987.
|
[19] |
Wei L, Zhang S, Gao W, et al. Person transfer GAN to bridge domain gap for person re-identification. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018: 79–88.
|
[20] |
Zhao L, Li X, Zhuang Y, et al. Deeply-learned part-aligned representations for person re-identification. In: 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017: 3239–3248.
|
[21] |
Zou Y, Yang X, Yu Z, et al. Joint disentangling and adaptation for cross-domain person re-identification. In: Vedaldi A, Bischof H, Brox T, editors. Computer Vision-ECCV 2020. Cham: Springer International Publishing, 2020: 87–104.
|
[22] |
Choi Y, Choi M, Kim M, et al. StarGAN: Unified generative adversarial networks for multi-domain image-to-image translation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018: 8789–8797.
|
[23] |
Yang F, Zhong Z, Luo Z, et al. Joint noise-tolerant learning and meta camera shift adaptation for unsupervised person re-identification. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE, 2021: 4853–4862.
|
[24] |
van den Oord A, Li Y, Vinyals O. Representation learning with contrastive predictive coding. 2018. https://doi.org/10.48550/arXiv.1807.03748. Accessed December 12, 2021.
|
[25] |
Zheng Y, Tang S, Teng G, et al. Online pseudo label generation by hierarchical cluster dynamics for adaptive person re-identification. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, Canada: IEEE, 2021: 8351–8361.
|
[26] |
Wu Y, Huang T, Yao H, et al. Multi-centroid representation network for domain adaptive person re-ID. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36 (5): 2750–2758. doi: 10.1609/aaai.v36i3.20178
|
[27] |
Wu Y, Wu X, Li X, et al. MGH: metadata guided hypergraph modeling for unsupervised person re-identification. In: MM '21: Proceedings of the 29th ACM International Conference on Multimedia. New York: Association for Computing Machinery, 2021: 1571–1580.
|
Figure 1. Illustration of our pipeline. We first apply the channel attention module after the backbone network to explicitly separate the camera-related information from the feature maps. Then, we utilize a new mechanism of dynamically updating the memory dictionary according to the distance between the instance feature and the cluster feature.
[1] |
Huang Y, Peng P, Jin Y, et al. Domain adaptive attention learning for unsupervised person re-identification. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34: 11069–11076. doi: 10.1609/aaai.v34i07.6762
|
[2] |
Ge Y, Zhu F, Chen D, et al. Self-paced contrastive learning with hybrid memory for domain adaptive object re-ID. In: NIPS’20: 34th International Conference on Neural Information Processing Systems. BC, Canada: Curran Associates Inc, 2020: 11309–11321.
|
[3] |
Chen H, Lagadec B, Brémond F. ICE: Inter-instance contrastive encoding for unsupervised person re-identification. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, Canada: IEEE, 2021: 14940–14949.
|
[4] |
Wang M, Lai B, Huang J, et al. Camera-aware proxies for unsupervised person re-identification. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35 (4): 2764–2772. doi: 10.1609/aaai.v35i4.16381
|
[5] |
Ge Y, Chen D, Li H. Mutual mean-teaching: Pseudo label refinery for unsupervised domain adaptation on person re-identification. 2020. https://doi.org/10.48550/arXiv.2001.01526. Accessed December 3, 2021
|
[6] |
Zheng K, Lan C, Zeng W, et al. Exploiting sample uncertainty for domain adaptive person re-identification. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35 (4): 3538–3546. doi: 10.1609/aaai.v35i4.16468
|
[7] |
Lin Y, Xie L, Wu Y, et al. Unsupervised person re-identification via softened similarity learning. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE, 2020: 3387–3396.
|
[8] |
Tian J, Tang Q, Li R, et al. A camera identity-guided distribution consistency method for unsupervised multi-target domain person re-identification. ACM Transactions on Intelligent Systems and Technology, 2021, 12 (4): 1–18. doi: 10.1145/3454130
|
[9] |
Xuan S, Zhang S. Intra-inter camera similarity for unsupervised person re-identification. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE, 2021: 11921–11930.
|
[10] |
Zheng L, Shen L, Tian L, et al. Scalable person re-identification: A benchmark. In: 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE, 2015: 1116–1124.
|
[11] |
Ristani E, Solera F, Zou R, et al. Performance measures and a data set for multi-target, multi-camera tracking. In: Hua G, Jégou H, editors. Computer Vision–ECCV 2016 Workshops. Cham: Springer International Publishing, 2016: 17–35.
|
[12] |
Song L, Wang C, Zhang L, et al. Unsupervised domain adaptive re-identification: Theory and practice. Pattern Recognition, 2020, 102: 107173. doi: 10.1016/j.patcog.2019.107173
|
[13] |
Fu Y, Wei Y, Wang G, et al. Self-similarity grouping: A simple unsupervised cross domain adaptation approach for person re-identification. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, South Korea: IEEE, 2019: 6111–6120.
|
[14] |
Lin Y, Dong X, Zheng L, et al. A bottom-up clustering approach to unsupervised person re-identification. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33 (1): 8738–8745. doi: 10.1609/aaai.v33i01.33018738
|
[15] |
Zeng K, Ning M, Wang Y, et al. Hierarchical clustering with hard-batch triplet loss for person re-identification. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE, 2020: 13654–13662.
|
[16] |
Zhang X, Cao J, Shen C, et al. Self-training with progressive augmentation for unsupervised cross-domain person re-identification. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, South Korea: IEEE, 2019: 8221–8230.
|
[17] |
Yu H X, Zheng W S, Wu A, et al. Unsupervised person re-identification by soft multilabel learning. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE, 2019: 2143–2152.
|
[18] |
Wang D, Zhang S. Unsupervised person re-identification via multi-label classification. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE, 2020: 10978–10987.
|
[19] |
Wei L, Zhang S, Gao W, et al. Person transfer GAN to bridge domain gap for person re-identification. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018: 79–88.
|
[20] |
Zhao L, Li X, Zhuang Y, et al. Deeply-learned part-aligned representations for person re-identification. In: 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017: 3239–3248.
|
[21] |
Zou Y, Yang X, Yu Z, et al. Joint disentangling and adaptation for cross-domain person re-identification. In: Vedaldi A, Bischof H, Brox T, editors. Computer Vision-ECCV 2020. Cham: Springer International Publishing, 2020: 87–104.
|
[22] |
Choi Y, Choi M, Kim M, et al. StarGAN: Unified generative adversarial networks for multi-domain image-to-image translation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018: 8789–8797.
|
[23] |
Yang F, Zhong Z, Luo Z, et al. Joint noise-tolerant learning and meta camera shift adaptation for unsupervised person re-identification. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE, 2021: 4853–4862.
|
[24] |
van den Oord A, Li Y, Vinyals O. Representation learning with contrastive predictive coding. 2018. https://doi.org/10.48550/arXiv.1807.03748. Accessed December 12, 2021.
|
[25] |
Zheng Y, Tang S, Teng G, et al. Online pseudo label generation by hierarchical cluster dynamics for adaptive person re-identification. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, Canada: IEEE, 2021: 8351–8361.
|
[26] |
Wu Y, Huang T, Yao H, et al. Multi-centroid representation network for domain adaptive person re-ID. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36 (5): 2750–2758. doi: 10.1609/aaai.v36i3.20178
|
[27] |
Wu Y, Wu X, Li X, et al. MGH: metadata guided hypergraph modeling for unsupervised person re-identification. In: MM '21: Proceedings of the 29th ACM International Conference on Multimedia. New York: Association for Computing Machinery, 2021: 1571–1580.
|