[1] |
Wootters W K, Zurek W H. A single quantum cannot be cloned. Nature, 1982, 299: 802-803.
|
[2] |
Sangouard N, Simon C, de Riedmatten H, et al. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys., 2011, 83: 33-80.
|
[3] |
Zhong M, Hedges M, Ahlefeldt R, et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature, 2015, 517: 177-180.
|
[4] |
Briegel H J, Dür W, Cirac J I, et al. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett., 1998, 81: 5932-5935.
|
[5] |
Zhou Z Q, Lin W B, Yang M, et al. Realization of reliable solid-state quantum memory for photonic polarization qubit. Phys. Rev. Lett., 2012, 108: 190505.
|
[6] |
Tang J S, Zhou Z Q, Wang Y T, et al. Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory. Nature Communications, 2015, 6: 8652.
|
[7] |
Liu X, Hu J, Li Z F, et al. Heralded entanglement distribution between two absorptive quantum memories. Nature, 2021, 594: 41-45.
|
[8] |
Morton J J L, Molmer K. Spin memories in for the long haul. Nature, 2015, 517: 153-154.
|
[9] |
Ma Y, Zhou Z Q, Liu C, et al. A Raman heterodyne study of the hyperfine interaction of the optically-excited state 5D0 of Eu3+:Y2SiO5. Journal of Luminescence, 2018, 202: 32-37.
|
[10] |
Ma Y, Ma Y Z, Zhou Z Q, et al. One-hour coherent optical storage in an atomic frequency comb memory. Nature Communications, 2021, 12: 2381.
|
[11] |
Bland-Hawthorn J, Sellars M J, Bartholomew J G. Quantum memories and the double-slit experiment: Implications for astronomical interferometry. Journal of the Optical Society of America B, 2021, 38(7): A86-A98.
|
[1] |
Wootters W K, Zurek W H. A single quantum cannot be cloned. Nature, 1982, 299: 802-803.
|
[2] |
Sangouard N, Simon C, de Riedmatten H, et al. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys., 2011, 83: 33-80.
|
[3] |
Zhong M, Hedges M, Ahlefeldt R, et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature, 2015, 517: 177-180.
|
[4] |
Briegel H J, Dür W, Cirac J I, et al. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett., 1998, 81: 5932-5935.
|
[5] |
Zhou Z Q, Lin W B, Yang M, et al. Realization of reliable solid-state quantum memory for photonic polarization qubit. Phys. Rev. Lett., 2012, 108: 190505.
|
[6] |
Tang J S, Zhou Z Q, Wang Y T, et al. Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory. Nature Communications, 2015, 6: 8652.
|
[7] |
Liu X, Hu J, Li Z F, et al. Heralded entanglement distribution between two absorptive quantum memories. Nature, 2021, 594: 41-45.
|
[8] |
Morton J J L, Molmer K. Spin memories in for the long haul. Nature, 2015, 517: 153-154.
|
[9] |
Ma Y, Zhou Z Q, Liu C, et al. A Raman heterodyne study of the hyperfine interaction of the optically-excited state 5D0 of Eu3+:Y2SiO5. Journal of Luminescence, 2018, 202: 32-37.
|
[10] |
Ma Y, Ma Y Z, Zhou Z Q, et al. One-hour coherent optical storage in an atomic frequency comb memory. Nature Communications, 2021, 12: 2381.
|
[11] |
Bland-Hawthorn J, Sellars M J, Bartholomew J G. Quantum memories and the double-slit experiment: Implications for astronomical interferometry. Journal of the Optical Society of America B, 2021, 38(7): A86-A98.
|