[1] |
Davenport H, Hasse H. Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen. J. Reine Angew. Math., 1935, 172: 151-182.
|
[2] |
Wan D. Algebraic theory of exponential sums over finite fields. https://www.math.uci.edu/~dwan/Wan_HIT_2019.pdf.
|
[3] |
Zhang S. The degrees of exponential sums of binomials. https://arxiv.org/abs/2010.08342.
|
[4] |
Wan D, Yin H. Algebraic degree periodicity in recurrence sequences. https://arxiv.org/abs/2009.14382.
|
[5] |
Bombieri E. On exponential sums in finite fields. II. Invent. Math., 1978, 47: 29-39.
|
[6] |
Wan D. Minimal polynomials and distinctness of Kloosterman sums. Finite Fields and Their Applications, 1995, 1: 189-203.
|
[7] |
Fisher B. Distinctness of Kloosterman sums. In: p-Adic Methods in Number Theory and Algebraic Geometry. Providence, RI: Amer. Math. Soc., 1992.
|
[8] |
Kononen K, Rinta-aho M, Väänänen K. On the degree of a Kloosterman sum as an algebraic integer. https://arxiv.org/abs/1107.0188.
|
[9] |
Katz N M. Gauss Sums, Kloosterman Sums, and Monodromy Groups. Princeton, NJ: Princeton University Press, 1988.
|
[10] |
Stickelberger L. Ueber eine Verallgemeinerung der Kreistheilung. Math. Ann., 1890, 37(3): 321-367.
|
[11] |
Washington L C. Introduction to Cyclotomic Fields. New York: Springer-Verlag, 1982.
|
[1] |
Davenport H, Hasse H. Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen. J. Reine Angew. Math., 1935, 172: 151-182.
|
[2] |
Wan D. Algebraic theory of exponential sums over finite fields. https://www.math.uci.edu/~dwan/Wan_HIT_2019.pdf.
|
[3] |
Zhang S. The degrees of exponential sums of binomials. https://arxiv.org/abs/2010.08342.
|
[4] |
Wan D, Yin H. Algebraic degree periodicity in recurrence sequences. https://arxiv.org/abs/2009.14382.
|
[5] |
Bombieri E. On exponential sums in finite fields. II. Invent. Math., 1978, 47: 29-39.
|
[6] |
Wan D. Minimal polynomials and distinctness of Kloosterman sums. Finite Fields and Their Applications, 1995, 1: 189-203.
|
[7] |
Fisher B. Distinctness of Kloosterman sums. In: p-Adic Methods in Number Theory and Algebraic Geometry. Providence, RI: Amer. Math. Soc., 1992.
|
[8] |
Kononen K, Rinta-aho M, Väänänen K. On the degree of a Kloosterman sum as an algebraic integer. https://arxiv.org/abs/1107.0188.
|
[9] |
Katz N M. Gauss Sums, Kloosterman Sums, and Monodromy Groups. Princeton, NJ: Princeton University Press, 1988.
|
[10] |
Stickelberger L. Ueber eine Verallgemeinerung der Kreistheilung. Math. Ann., 1890, 37(3): 321-367.
|
[11] |
Washington L C. Introduction to Cyclotomic Fields. New York: Springer-Verlag, 1982.
|