[1] |
Lian H, Qiao X, Zhang W. Homogeneity pursuit in single index models based panel data analysis. Journal of Business & Economic Statistics, 2019, 39(2): 386-401.
|
[2] |
Wang H, Xia Y. Shrinkage estimation of the varying coefficient model. Journal of the American Statistical Association, 2009, 104: 747-757.
|
[3] |
Xue L, Zhu L. Empirical likelihood for a varying coefficient model with longitudinal data. Journal of the American Statistical Association, 2007, 102: 642-654.
|
[4] |
Park M Y, Hastie T, Tibshirani R. Averaged gene expressions for regression. Biostatistics, 2007, 8(2): 212-227.
|
[5] |
Friedman J, Hastie T, Höfling H, et al. Pathwise coordinate optimization. The Annals of Applied Statistics, 2007, 1(2): 302-332.
|
[6] |
Tibshirani R, Saunders M, Rosset S, et al. Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2005, 67(1): 91-108.
|
[7] |
Bondell H D, Reich B J. Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with OSCAR. Biometrics, 2008, 64(1): 115-123.
|
[8] |
Zhu Y, Shen X, Pan W. Simultaneous grouping pursuit and feature selection over an undirected graph. Journal of the American Statistical Association, 2013, 108: 713-725.
|
[9] |
Yang Y, He X. Bayesian empirical likelihood for quantile regression. The Annals of Statistics, 2012, 40(2): 1102-1131.
|
[10] |
Ke Z T, Fan J, Wu Y. Homogeneity pursuit. Journal of the American Statistical Association, 2015, 110: 175-194.
|
[11] |
Wang W, Phillips P C, Su L. Homogeneity pursuit in panel data models: Theory and application. Journal of Applied Econometrics, 2018, 33(6): 797-815.
|
[12] |
Ke Y, Li J, Zhang W, et al. Structure identification in panel data analysis. The Annals of Statistics, 2016, 44(3): 1193-1233.
|
[13] |
Li J, Yue M, Zhang W. Subgroup identification via homogeneity pursuit for dense longitudinal/spatial data. Statistics in Medicine, 2019, 38: 3256-3271.
|
[14] |
Li F, Sang H. Spatial homogeneity pursuit of regression coefficients for large datasets. Journal of the American Statistical Association, 2019, 114: 1050-1062.
|
[15] |
Wu C O, Chiang C T, Hoover D R. Asymptotic confidence regions for kernel smoothing of a varying-coefficient model with longitudinal data. Journal of the American Statistical Association, 1998, 93: 1388-1402.
|
[16] |
Cai Z, Fan J, Li R. Efficient estimation and inferences for varying-coefficient models. Journal of the American Statistical Association, 2000, 95: 888-902.
|
[17] |
Sun Y, Carroll R J, Li D. Semiparametric estimation of fixed-effects panel data varying coefficient models. In: Nonparametric Econometric Methods. Bingley, UK: Emerald Group Publishing Limited, 2009.
|
[18] |
Li D, Chen J, Gao J. Non-parametric time-varying coefficient panel data models with fixed effects. The Econometrics Journal, 2011, 14(3): 387-408.
|
[19] |
Rodriguez-Poo J M, Soberon A. Direct semi-parametric estimation of fixed effects panel data varying coefficient models. The Econometrics Journal, 2014, 17(1): 107-138.
|
[20] |
Li D, Ke Y, Zhang W, et al. Model selection and structure specification in ultra-high dimensional generalised semi-varying coefficient models. The Annals of Statistics, 2015, 43(6): 2676-2705.
|
[21] |
Tang Q, Wang J. L1-estimation for varying coefficient models. Statistics, 2005, 39(5): 389-404.
|
[22] |
Zhang R, Zhao W, Liu J. Robust estimation and variable selection for semiparametric partially linear varying coefficient model based on modal regression. Journal of Nonparametric Statistics, 2013, 25(2): 523-544.
|
[23] |
Yang H, Lv J, Guo C. Robust estimation and variable selection for varying-coefficient single-index models based on modal regression. Communications in Statistics: Theory and Methods, 2016, 45(14): 4048-4067.
|
[24] |
Jiang Y, Ji Q, Xie B. Robust estimation for the varying coefficient partially nonlinear models. Journal of Computational and Applied Mathematics, 2017, 326: 31-43.
|
[25] |
Tang Q, Cheng L. M-estimation and B-spline approximation for varying coefficient models with longitudinal data. Journal of Nonparametric Statistics, 2008, 20(7): 611-625.
|
[26] |
Rousseeuw P J, Leroy A M. Robust Regression and Outlier Detection. Hoboken, NJ: Wiley, 2005.
|
[27] |
Ling S. Self-weighted least absolute deviation estimation for in finite variance autoregressive models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2005, 67(3): 381-393.
|
[28] |
He X, Zhu Z Y, Fung W K. Estimation in a semiparametric model for longitudinal data with unspecified dependence structure. Biometrika, 2002, 89(3): 579-590.
|
[29] |
Honda T. Quantile regression in varying coefficient models. Journal of Statistical Planning and Inference, 2004, 121(1): 113-125.
|
[30] |
Cho H, Fryzlewicz P. Multiple-change-point detection for high dimensional time series via sparsified binary segmentation. Journal of the Royal Statistical Society: Series B: Statistical Methodology, 2015, 77(2): 475-507.
|
[31] |
Fryzlewicz P. Wild binary segmentation for multiple change-point detection. Annals of Statistics, 2014, 42(6): 2243-2281.
|
[32] |
Fan J, Feng Y, Song R. Nonparametric independence screening in sparse ultra-high-dimensional additive models. Journal of the American Statistical Association, 2011, 106: 544-557.
|
[33] |
Huang J, Horowitz J L, Wei F. Variable selection in nonparametric additive models. Annals of Statistics, 2010, 38(4): 2282-2313.
|
[1] |
Lian H, Qiao X, Zhang W. Homogeneity pursuit in single index models based panel data analysis. Journal of Business & Economic Statistics, 2019, 39(2): 386-401.
|
[2] |
Wang H, Xia Y. Shrinkage estimation of the varying coefficient model. Journal of the American Statistical Association, 2009, 104: 747-757.
|
[3] |
Xue L, Zhu L. Empirical likelihood for a varying coefficient model with longitudinal data. Journal of the American Statistical Association, 2007, 102: 642-654.
|
[4] |
Park M Y, Hastie T, Tibshirani R. Averaged gene expressions for regression. Biostatistics, 2007, 8(2): 212-227.
|
[5] |
Friedman J, Hastie T, Höfling H, et al. Pathwise coordinate optimization. The Annals of Applied Statistics, 2007, 1(2): 302-332.
|
[6] |
Tibshirani R, Saunders M, Rosset S, et al. Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2005, 67(1): 91-108.
|
[7] |
Bondell H D, Reich B J. Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with OSCAR. Biometrics, 2008, 64(1): 115-123.
|
[8] |
Zhu Y, Shen X, Pan W. Simultaneous grouping pursuit and feature selection over an undirected graph. Journal of the American Statistical Association, 2013, 108: 713-725.
|
[9] |
Yang Y, He X. Bayesian empirical likelihood for quantile regression. The Annals of Statistics, 2012, 40(2): 1102-1131.
|
[10] |
Ke Z T, Fan J, Wu Y. Homogeneity pursuit. Journal of the American Statistical Association, 2015, 110: 175-194.
|
[11] |
Wang W, Phillips P C, Su L. Homogeneity pursuit in panel data models: Theory and application. Journal of Applied Econometrics, 2018, 33(6): 797-815.
|
[12] |
Ke Y, Li J, Zhang W, et al. Structure identification in panel data analysis. The Annals of Statistics, 2016, 44(3): 1193-1233.
|
[13] |
Li J, Yue M, Zhang W. Subgroup identification via homogeneity pursuit for dense longitudinal/spatial data. Statistics in Medicine, 2019, 38: 3256-3271.
|
[14] |
Li F, Sang H. Spatial homogeneity pursuit of regression coefficients for large datasets. Journal of the American Statistical Association, 2019, 114: 1050-1062.
|
[15] |
Wu C O, Chiang C T, Hoover D R. Asymptotic confidence regions for kernel smoothing of a varying-coefficient model with longitudinal data. Journal of the American Statistical Association, 1998, 93: 1388-1402.
|
[16] |
Cai Z, Fan J, Li R. Efficient estimation and inferences for varying-coefficient models. Journal of the American Statistical Association, 2000, 95: 888-902.
|
[17] |
Sun Y, Carroll R J, Li D. Semiparametric estimation of fixed-effects panel data varying coefficient models. In: Nonparametric Econometric Methods. Bingley, UK: Emerald Group Publishing Limited, 2009.
|
[18] |
Li D, Chen J, Gao J. Non-parametric time-varying coefficient panel data models with fixed effects. The Econometrics Journal, 2011, 14(3): 387-408.
|
[19] |
Rodriguez-Poo J M, Soberon A. Direct semi-parametric estimation of fixed effects panel data varying coefficient models. The Econometrics Journal, 2014, 17(1): 107-138.
|
[20] |
Li D, Ke Y, Zhang W, et al. Model selection and structure specification in ultra-high dimensional generalised semi-varying coefficient models. The Annals of Statistics, 2015, 43(6): 2676-2705.
|
[21] |
Tang Q, Wang J. L1-estimation for varying coefficient models. Statistics, 2005, 39(5): 389-404.
|
[22] |
Zhang R, Zhao W, Liu J. Robust estimation and variable selection for semiparametric partially linear varying coefficient model based on modal regression. Journal of Nonparametric Statistics, 2013, 25(2): 523-544.
|
[23] |
Yang H, Lv J, Guo C. Robust estimation and variable selection for varying-coefficient single-index models based on modal regression. Communications in Statistics: Theory and Methods, 2016, 45(14): 4048-4067.
|
[24] |
Jiang Y, Ji Q, Xie B. Robust estimation for the varying coefficient partially nonlinear models. Journal of Computational and Applied Mathematics, 2017, 326: 31-43.
|
[25] |
Tang Q, Cheng L. M-estimation and B-spline approximation for varying coefficient models with longitudinal data. Journal of Nonparametric Statistics, 2008, 20(7): 611-625.
|
[26] |
Rousseeuw P J, Leroy A M. Robust Regression and Outlier Detection. Hoboken, NJ: Wiley, 2005.
|
[27] |
Ling S. Self-weighted least absolute deviation estimation for in finite variance autoregressive models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2005, 67(3): 381-393.
|
[28] |
He X, Zhu Z Y, Fung W K. Estimation in a semiparametric model for longitudinal data with unspecified dependence structure. Biometrika, 2002, 89(3): 579-590.
|
[29] |
Honda T. Quantile regression in varying coefficient models. Journal of Statistical Planning and Inference, 2004, 121(1): 113-125.
|
[30] |
Cho H, Fryzlewicz P. Multiple-change-point detection for high dimensional time series via sparsified binary segmentation. Journal of the Royal Statistical Society: Series B: Statistical Methodology, 2015, 77(2): 475-507.
|
[31] |
Fryzlewicz P. Wild binary segmentation for multiple change-point detection. Annals of Statistics, 2014, 42(6): 2243-2281.
|
[32] |
Fan J, Feng Y, Song R. Nonparametric independence screening in sparse ultra-high-dimensional additive models. Journal of the American Statistical Association, 2011, 106: 544-557.
|
[33] |
Huang J, Horowitz J L, Wei F. Variable selection in nonparametric additive models. Annals of Statistics, 2010, 38(4): 2282-2313.
|