[1] |
YUN G. Total scalar curvature andL2-harmonic 1-forms on a minimal hypersurface in Euclidean space[J]. Geom. Dedicata, 2002, 89: 135-141.
|
[2] |
NI L. Gap theorems for minimal submanifolds in Rn+1[J]. Commun. Anal. Geom., 2001,9: 641-656.
|
[3] |
SEO K. Minimal submanifolds with small total scalar curvature in Euclidean space[J]. Kodai Math. J., 2008, 31: 113-119.
|
[4] |
SEO K. Rigidity of minimal submanifolds in hyperbolic space[J]. Arch. Math. 2010, 94: 173-181.
|
[5] |
FU H P, XU H W. Total curvature and L2-harmonic 1-forms on complete submanifolds in space forms[J]. Geom. Dedicata, 2010, 144: 129-140.
|
[6] |
CAVALCANTE M P, MIRANDOLA H, VITRIO F. L2-harmonic 1-forms on submanifolds with ?倕nite total curvature[J]. J. Geom. Anal., 2014, 24: 205-222.
|
[7] |
ZHU P, FANG SW. Finiteness of non-parabolic ends on submanifolds in spheres[J]. Ann. Global Anal. Geom., 2014, 46: 187-196.
|
[8] |
LIN H Z. Vanishing theorems for harmonic forms on complete submanifolds in Euclidean space[J]. J. Math. Anal. Appl., 2015, 425: 774-787.
|
[9] |
GAN W Z, ZHU P, FANG S W. L2-harmonic 2-forms on minimal hypersurfaces in spheres[J]. Diff. Geom. Appl., 2018,56: 202-210.
|
[10] |
LI P, WANG J P. Minimal hypersurfaces with fnite index[J]. Math. Res. Lett., 2002, 9: 95-104.
|
[11] |
HAN Y B. The topological structure of complete noncompact sumanifolds in spheres[J]. J. Math. Anal. Appl., 2018, 457: 991-1006.
|
[12] |
LI P. Geometric Analysis[M]. Cambridge Stud. Adv. Math., 2012.
|
[13] |
LI P. On the Sobolev constant and the p-spectrum of a compact Riemannian manifold[J]. Ann. Sci. c. Norm. Supér., 1980, 13: 451-468.
|
[1] |
YUN G. Total scalar curvature andL2-harmonic 1-forms on a minimal hypersurface in Euclidean space[J]. Geom. Dedicata, 2002, 89: 135-141.
|
[2] |
NI L. Gap theorems for minimal submanifolds in Rn+1[J]. Commun. Anal. Geom., 2001,9: 641-656.
|
[3] |
SEO K. Minimal submanifolds with small total scalar curvature in Euclidean space[J]. Kodai Math. J., 2008, 31: 113-119.
|
[4] |
SEO K. Rigidity of minimal submanifolds in hyperbolic space[J]. Arch. Math. 2010, 94: 173-181.
|
[5] |
FU H P, XU H W. Total curvature and L2-harmonic 1-forms on complete submanifolds in space forms[J]. Geom. Dedicata, 2010, 144: 129-140.
|
[6] |
CAVALCANTE M P, MIRANDOLA H, VITRIO F. L2-harmonic 1-forms on submanifolds with ?倕nite total curvature[J]. J. Geom. Anal., 2014, 24: 205-222.
|
[7] |
ZHU P, FANG SW. Finiteness of non-parabolic ends on submanifolds in spheres[J]. Ann. Global Anal. Geom., 2014, 46: 187-196.
|
[8] |
LIN H Z. Vanishing theorems for harmonic forms on complete submanifolds in Euclidean space[J]. J. Math. Anal. Appl., 2015, 425: 774-787.
|
[9] |
GAN W Z, ZHU P, FANG S W. L2-harmonic 2-forms on minimal hypersurfaces in spheres[J]. Diff. Geom. Appl., 2018,56: 202-210.
|
[10] |
LI P, WANG J P. Minimal hypersurfaces with fnite index[J]. Math. Res. Lett., 2002, 9: 95-104.
|
[11] |
HAN Y B. The topological structure of complete noncompact sumanifolds in spheres[J]. J. Math. Anal. Appl., 2018, 457: 991-1006.
|
[12] |
LI P. Geometric Analysis[M]. Cambridge Stud. Adv. Math., 2012.
|
[13] |
LI P. On the Sobolev constant and the p-spectrum of a compact Riemannian manifold[J]. Ann. Sci. c. Norm. Supér., 1980, 13: 451-468.
|