[1] |
TENG Z, WANG L. Persistence and extinction for a class of stochastic SIS epidemic models with nonlinear incidence rate[J]. Physica A, 2016,451: 507-518.
|
[2] |
YOSHIDA N, HARA T. Global stability of a delayed SIR epidemic model with density dependent birth and death rates[J]. Computational and Applied Mathematics, 2007, 201(2): 339-347.
|
[3] |
ZHAO Y., JIANG, D., MAO X, et al. The threshold of a stochastic SIRS epidemic model in a population with varying size[J]. Discrete Contin. Dyn. Syst., 2015, 20(4): 1277-1295.
|
[4] |
ZHANG X, SHI Q, MA S. Dynamic behavior of a stochastic SIQS epidemic model with Lévy jumps[J]. Nonlinear Dynamics, 2018, 93(3): 1481-1493.
|
[5] |
庞国萍,陈兰荪. 具饱和传染率的脉冲免疫接种SIRS模型[J]. 系统科学与数学, 2007, 27(4): 563-572. PANG G P, CHEN L S. The SIRS epidemic model with saturated contact rate and pulse vaccination [J]. J. Sys. Sci. & Math. Scis., 2007, 27(4): 563-572.
|
[6] |
LIU Q, CHEN Q. Dynamics of a stochastic SIR epidemic model with saturated incidence[J]. Appl. Math. Comput. 2016,282: 155-166.
|
[7] |
徐为坚. 具常数输入率及饱和发生率的脉冲接种SIQRS传染病模型[J]. 系统科学与数学,2010, 30(1): 43-52.XU W J. The SIQRS epidemic model of impulsive vaccination with constant input and saturation incidence rate [J]. J. Sys. Sci. & Math. Scis., 2010, 30(1): 43-52.
|
[8] |
唐晓明, 薛亚奎. 具有饱和治疗函数与密度制约的SIS传染病模型的后向分支[J]. 数学的实践与认识, 2010, 40(24): 241-246.Tang X M, Xue Y K. Backward Bifurcation of a SIS epidemic model with density dependent birth and death rates and saturated treatment function [J]. Mathematics in Practice and Theory, 2010, 40(24): 241-246.
|
[9] |
朱凌峰, 李维德, 章培军. 具有连续和脉冲接种的SIQVS传染病模型[J]. 兰州大学学报, 2011, 47(4): 99-102.ZHU L F, LI W D, ZHANG P J. A SIQVS epidemic model with continuous and impulsive vaccination [J]. Journal of Lanzhou University, 2011, 47(4) :99-102.
|
[10] |
LIU Q, CHEN Q. Analysis of the deterministic and stochastic SIRS epidemic models with nonlinear incidence. Phys. A 2015,428, 140-153.
|
[11] |
张改平,董玉才,许飞,等. 具有垂直传染且总人口在变化的SIRS传染病模型的渐近分析[J]. 数学的实践与认识, 2011, 41(8): 139-143.ZHANG G P, DONG Y C, XU F, et al. Asymptotic analysis of an SIRS epidemic model with vertical infection and varying population[J]. Mathematics in Practice and Theory , 2011, 41(8): 139-143.
|
[12] |
林子植,董霖,李学鹏. 一类具有常数输入和垂直传染的SIRI传染病模型[J]. 数学的实践与认识, 2011, 41(15): 156-164.LIN Z Z, DONG L, LI X P. A kind of SIRI epidemic model with constant immigration and vertical transmission[J]. Mathematics in Practice and Theory, 2011, 41(15): 156-164.
|
[13] |
马知恩, 周义仓. 传染病动力学的数学建模与研究[M]. 北京: 科学出版社, 2004.MA Z E, ZHOU Y C. Mathematics Modeling and Research of Infectious Disease Dynamics[M]. BeiJing: Science Press, 2004.)
|
[1] |
TENG Z, WANG L. Persistence and extinction for a class of stochastic SIS epidemic models with nonlinear incidence rate[J]. Physica A, 2016,451: 507-518.
|
[2] |
YOSHIDA N, HARA T. Global stability of a delayed SIR epidemic model with density dependent birth and death rates[J]. Computational and Applied Mathematics, 2007, 201(2): 339-347.
|
[3] |
ZHAO Y., JIANG, D., MAO X, et al. The threshold of a stochastic SIRS epidemic model in a population with varying size[J]. Discrete Contin. Dyn. Syst., 2015, 20(4): 1277-1295.
|
[4] |
ZHANG X, SHI Q, MA S. Dynamic behavior of a stochastic SIQS epidemic model with Lévy jumps[J]. Nonlinear Dynamics, 2018, 93(3): 1481-1493.
|
[5] |
庞国萍,陈兰荪. 具饱和传染率的脉冲免疫接种SIRS模型[J]. 系统科学与数学, 2007, 27(4): 563-572. PANG G P, CHEN L S. The SIRS epidemic model with saturated contact rate and pulse vaccination [J]. J. Sys. Sci. & Math. Scis., 2007, 27(4): 563-572.
|
[6] |
LIU Q, CHEN Q. Dynamics of a stochastic SIR epidemic model with saturated incidence[J]. Appl. Math. Comput. 2016,282: 155-166.
|
[7] |
徐为坚. 具常数输入率及饱和发生率的脉冲接种SIQRS传染病模型[J]. 系统科学与数学,2010, 30(1): 43-52.XU W J. The SIQRS epidemic model of impulsive vaccination with constant input and saturation incidence rate [J]. J. Sys. Sci. & Math. Scis., 2010, 30(1): 43-52.
|
[8] |
唐晓明, 薛亚奎. 具有饱和治疗函数与密度制约的SIS传染病模型的后向分支[J]. 数学的实践与认识, 2010, 40(24): 241-246.Tang X M, Xue Y K. Backward Bifurcation of a SIS epidemic model with density dependent birth and death rates and saturated treatment function [J]. Mathematics in Practice and Theory, 2010, 40(24): 241-246.
|
[9] |
朱凌峰, 李维德, 章培军. 具有连续和脉冲接种的SIQVS传染病模型[J]. 兰州大学学报, 2011, 47(4): 99-102.ZHU L F, LI W D, ZHANG P J. A SIQVS epidemic model with continuous and impulsive vaccination [J]. Journal of Lanzhou University, 2011, 47(4) :99-102.
|
[10] |
LIU Q, CHEN Q. Analysis of the deterministic and stochastic SIRS epidemic models with nonlinear incidence. Phys. A 2015,428, 140-153.
|
[11] |
张改平,董玉才,许飞,等. 具有垂直传染且总人口在变化的SIRS传染病模型的渐近分析[J]. 数学的实践与认识, 2011, 41(8): 139-143.ZHANG G P, DONG Y C, XU F, et al. Asymptotic analysis of an SIRS epidemic model with vertical infection and varying population[J]. Mathematics in Practice and Theory , 2011, 41(8): 139-143.
|
[12] |
林子植,董霖,李学鹏. 一类具有常数输入和垂直传染的SIRI传染病模型[J]. 数学的实践与认识, 2011, 41(15): 156-164.LIN Z Z, DONG L, LI X P. A kind of SIRI epidemic model with constant immigration and vertical transmission[J]. Mathematics in Practice and Theory, 2011, 41(15): 156-164.
|
[13] |
马知恩, 周义仓. 传染病动力学的数学建模与研究[M]. 北京: 科学出版社, 2004.MA Z E, ZHOU Y C. Mathematics Modeling and Research of Infectious Disease Dynamics[M]. BeiJing: Science Press, 2004.)
|