ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Original Paper

Ensemble forecast and verification of the Western Pacific Subtropical High based on multi-model data from TIGGE

Cite this:
https://doi.org/10.3969/j.issn.0253-2778.2017.05.004
  • Received Date: 21 February 2017
  • Rev Recd Date: 12 April 2017
  • Publish Date: 31 May 2017
  • The skill of a set of control and ensemble forecasts of Western Pacific Subtropical High was evaluated based on the 500 hPa geopotential height information from the THORPEX Interactive Grand Global Ensemble (TIGGE) datasets, which consist of model outputs from CMA, JMA, ECMWF, UKMO and NCEP. Three methods were adopted, i.e., Ensemble Mean (EMN), Bias-Removed Ensemble Mean (BREM) and running Training Period Superensemble (R_SUP), to integrate the data from different sources, and the metrics for performance evaluation include Talagrand distribution, correlation coefficient, Root Mean Square Error (RMSE), and Brier Skill Score (BSS). A comparison of the outputs of these models shows significant variation in forecast performance. The results indicate that the UKMO model has the best forecast skill for the 500 hPa geopotential height among all control forecasts, while the ECMWF model ranks on the top of all ensemble forecasts. From the improvement of RMSE, both BREM and R_SUP can significantly reduce the RMSE of the integrated forecast results compared to the original control forecasts in TIGGE, but EMN does not show similar improvement. However, none of the three integration methods shows discernable improvement of ensemble forecast of the 500 hPa geopotential height, with all having less skills than ECMWF single model ensemble forecast.
    The skill of a set of control and ensemble forecasts of Western Pacific Subtropical High was evaluated based on the 500 hPa geopotential height information from the THORPEX Interactive Grand Global Ensemble (TIGGE) datasets, which consist of model outputs from CMA, JMA, ECMWF, UKMO and NCEP. Three methods were adopted, i.e., Ensemble Mean (EMN), Bias-Removed Ensemble Mean (BREM) and running Training Period Superensemble (R_SUP), to integrate the data from different sources, and the metrics for performance evaluation include Talagrand distribution, correlation coefficient, Root Mean Square Error (RMSE), and Brier Skill Score (BSS). A comparison of the outputs of these models shows significant variation in forecast performance. The results indicate that the UKMO model has the best forecast skill for the 500 hPa geopotential height among all control forecasts, while the ECMWF model ranks on the top of all ensemble forecasts. From the improvement of RMSE, both BREM and R_SUP can significantly reduce the RMSE of the integrated forecast results compared to the original control forecasts in TIGGE, but EMN does not show similar improvement. However, none of the three integration methods shows discernable improvement of ensemble forecast of the 500 hPa geopotential height, with all having less skills than ECMWF single model ensemble forecast.
  • loading
  • [1]
    朱乾根, 林锦瑞,寿绍文,等. 天气学原理和方法[M]. 4版. 北京:气象出版社,2007: 475-484.
    [2]
    黄士松, 余志豪. 副热带高压结构及其同大气环流有关若干问题的研究[J]. 气象学报, 1962, 31(4): 339-359.
    [3]
    FUJITA T T, WATANABE K, IZAWA T. Formation and structure of equatorial anticyclones caused by large-scale cross-equatorial flows determined by ATS-I photographs[J]. Journal of Applied Meteorology, 1969, 8(4): 649-667.
    [4]
    SADLER J C, BRETT W R, HARRIS B E, et al. Forecasting minimum cloudiness over the Red River Delta during the summer monsoon[R]. Honolulu:Hawaii Institute of Geophysics, 1968.
    [5]
    陶诗言, 朱福康. 夏季亚洲南部 100 毫巴流型的变化及其与西太平洋副热带高压进退的关系[J]. 气象学报, 1964, 34(4): 385-396.
    [6]
    陶诗言, 王作述, 朱福康. 中国夏季副热带天气系统若干问题的研究[M]. 北京:科学出版社,1963.
    [7]
    HUANG R, CHEN J, WANG L, et al. Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system[J]. Advances in Atmospheric Sciences, 2012, 29(5): 910-942.
    [8]
    HE C, ZHOU T, WU B. The key oceanic regions responsible for the interannual variability of the western North Pacific subtropical high and associated mechanisms[J]. Journal of Meteorological Research, 2015, 29(4): 562-575.
    [9]
    MATSUMURA S, HORINOUCHI T. Pacific Ocean decadal forcing of long-term changes in the western Pacific subtropical high[J]. Scientific Reports, 2016(6):37765.
    [10]
    吴国雄, 丑纪范, 刘屹岷, 等. 副热带高压形成和变异的动力学问题[M]. 北京: 科学出版社, 2002: 312.
    [11]
    HE Jinhai, ZHOU Bing, WEN Min, et al. Vertical circulation structure,interannual variation features and variation mechanism of western Pacific subtropical high[J]. Advances in Atmospheric Sciences, 2001, 18(4): 497-510.
    [12]
    赵声蓉, 宋正山. 华北汛期旱涝与中高纬大气环流异常[J]. 高原气象, 1999, 18(4): 535-540.
    [13]
    韦道明, 李崇银, 谭言科. 夏季西太平洋副热带高压南北位置变动特征及其影响[J]. 气候与环境研究, 2011, 16(3): 255-272.
    [14]
    任广成, 吴小林, 李旺. 盛夏副高脊线异常变化对我国气温影响及海气背景分析[J]. 气象与环境科学, 2009, 32(3): 1-5.
    [15]
    张韧. 基于前传式网络逼近的太平洋副热带高压活动的诊断预测[J]. 大气科学, 2001, 25(5):650-660.
    [16]
    刘科峰, 张韧, 洪梅, 等. 基于最小二乘支持向量机的副热带高压预测模型[J]. 应用气象学报, 2009, 20(3): 354.
    [17]
    杨杰, 封国林, 赵俊虎, 等. 夏季西太平洋副热带高压的客观定量化预测及其对汛期降水的指示[J]. 气象学报, 2012, 70(5): 1032.
    [18]
    贾亚俊, 胡轶佳, 钟中, 等. 夏季西太平洋副热带高压指数的统计预测模型[J]. 高原气象, 2015 (5): 1369-1378.
    [19]
    SUI C H, CHUNG P H, LI T. Interannual and interdecadal variability of the summertime western North Pacific subtropical high[J]. Geophysical Research Letters, 2007, 34(11) :93-104.
    [20]
    LU R, DING H, RYU C S, et al. Midlatitude westward propagating disturbances preceding intraseasonal oscillations of convection over the subtropical western North Pacific during summer[J]. Geophysical Research Letters, 2007, 34(21) :393-407.
    [21]
    ZHANG Z, KRISHNAMURTI T N. Ensemble forecasting of hurricane tracks[J]. Bulletin of the American Meteorological Society, 1997, 78(12): 2785-2795.
    [22]
    郑飞. ENSO集合预报研究[D]. 北京:中国科学院研究生院(大气物理研究所),2007.
    [23]
    周文友,智协飞.2009年夏季西太平洋台风路径和强度的多模式集成预报[J].气象科学,2012,32(5): 492-499.
    [24]
    林春泽, 智协飞, 韩艳, 等. 基于 TIGGE 资料的地面气温多模式超级集合预报[J]. 应用气象学报, 2009,20(6):706-712.
    [25]
    ZHI X, QI H, BAI Y, et al. A comparison of three kinds of multimodel ensemble forecast techniques based on the TIGGE data[J]. Acta Meteorologica Sinica, 2012, 26: 41-51.
    [26]
    崔慧慧, 智协飞. 基于 TIGGE 资料的地面气温延伸期多模式集成预报[J]. 大气科学学报, 2013, 36(2): 165-173.
    [27]
    智协飞, 季晓东, 张璟, 等. 基于 TIGGE 资料的地面气温和降水的多模式集成预报[J]. 大气科学学报, 2013, 36(3): 257-266.
    [28]
    RICHARDSON D, BUIZZA R, HAGEDORN R. Final report of the 1st Workshop on the THORPEX Interactive Grand Global Ensemble (TIGGE)[R]. World Meteorological Organization WMO/TD, 2005.
    [29]
    Sounding data[DB/OL].[2017-01-20].http://weather.uwyo.edu/upperair/seasia.html
    [30]
    TALAGRAND O, VAUTARD R, STRAUSS B. Evaluation of probabilistic prediction systems[C]//Proceedings of ECMWF Workshop on Predictability, 1997, 1: 25.
    [31]
    BRIER G W. Verification of forecasts expressed in terms of probability[J]. Monthly Weather Review, 1950, 78(1): 1-3.
    [32]
    李莉, 李应林, 田华, 等. T213 全球集合预报系统性误差订正研究[J]. 气象, 2011, 37(1): 31-38.
    [33]
    HAMILL T M, D'ENTREMONT R P, BUNTIN J T. A description of the air force real-time nephanalysis model[J]. Weather and Forecasting, 1992, 7(2): 288-306.
    [34]
    HAMILL T M, WHITAKER J S, SNYDER C. Distance-dependent filtering of background error covariance estimates in an ensemble Kalmanfilter[J]. Monthly Weather Review, 2001, 129(11): 2776-2790.
    [35]
    CARTWRIGHT T J, KRISHNAMURTI T N. Warm season mesoscale superensemble precipitation forecasts in the southeastern United States[J]. Weather and Forecasting, 2007, 22(4): 873-886.
    [36]
    KRISHNAMURTI T N, KISHTAWAL C M, ZHANG Z, et al. Multimodel ensemble forecasts for weather and seasonal climate[J]. Journal of Climate, 2000, 13(23): 4196-4216.
    [37]
    HE C, ZHI X, YOU Q, et al. Multi-model ensemble forecasts of tropical cyclones in 2010 and 2011 based on the Kalman Filter method[J]. Meteorology and Atmospheric Physics, 2015, 127(4): 467-479.
    [38]
    MURPHY A H, EPSTEIN E S. Skill scores and correlation coefficients in model verification[J]. Monthly Weather Review, 1989, 117(3): 572-582.
    [39]
    NIU R, ZHAI P. Synoptic verification of medium-extended-range forecasts of the Northwest Pacific subtropical high and South Asian high based on multi-center TIGGE data[J]. Acta Meteorologica Sinica, 2013, 27(5): 725-741.
    [40]
    NIU R, ZHAI P, ZHOU B. Evaluation of forecast performance of Asian summer monsoon low-level winds using the TIGGE dataset[J]. Weather and Forecasting, 2015, 30(2): 455-470.
  • 加载中

Catalog

    [1]
    朱乾根, 林锦瑞,寿绍文,等. 天气学原理和方法[M]. 4版. 北京:气象出版社,2007: 475-484.
    [2]
    黄士松, 余志豪. 副热带高压结构及其同大气环流有关若干问题的研究[J]. 气象学报, 1962, 31(4): 339-359.
    [3]
    FUJITA T T, WATANABE K, IZAWA T. Formation and structure of equatorial anticyclones caused by large-scale cross-equatorial flows determined by ATS-I photographs[J]. Journal of Applied Meteorology, 1969, 8(4): 649-667.
    [4]
    SADLER J C, BRETT W R, HARRIS B E, et al. Forecasting minimum cloudiness over the Red River Delta during the summer monsoon[R]. Honolulu:Hawaii Institute of Geophysics, 1968.
    [5]
    陶诗言, 朱福康. 夏季亚洲南部 100 毫巴流型的变化及其与西太平洋副热带高压进退的关系[J]. 气象学报, 1964, 34(4): 385-396.
    [6]
    陶诗言, 王作述, 朱福康. 中国夏季副热带天气系统若干问题的研究[M]. 北京:科学出版社,1963.
    [7]
    HUANG R, CHEN J, WANG L, et al. Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system[J]. Advances in Atmospheric Sciences, 2012, 29(5): 910-942.
    [8]
    HE C, ZHOU T, WU B. The key oceanic regions responsible for the interannual variability of the western North Pacific subtropical high and associated mechanisms[J]. Journal of Meteorological Research, 2015, 29(4): 562-575.
    [9]
    MATSUMURA S, HORINOUCHI T. Pacific Ocean decadal forcing of long-term changes in the western Pacific subtropical high[J]. Scientific Reports, 2016(6):37765.
    [10]
    吴国雄, 丑纪范, 刘屹岷, 等. 副热带高压形成和变异的动力学问题[M]. 北京: 科学出版社, 2002: 312.
    [11]
    HE Jinhai, ZHOU Bing, WEN Min, et al. Vertical circulation structure,interannual variation features and variation mechanism of western Pacific subtropical high[J]. Advances in Atmospheric Sciences, 2001, 18(4): 497-510.
    [12]
    赵声蓉, 宋正山. 华北汛期旱涝与中高纬大气环流异常[J]. 高原气象, 1999, 18(4): 535-540.
    [13]
    韦道明, 李崇银, 谭言科. 夏季西太平洋副热带高压南北位置变动特征及其影响[J]. 气候与环境研究, 2011, 16(3): 255-272.
    [14]
    任广成, 吴小林, 李旺. 盛夏副高脊线异常变化对我国气温影响及海气背景分析[J]. 气象与环境科学, 2009, 32(3): 1-5.
    [15]
    张韧. 基于前传式网络逼近的太平洋副热带高压活动的诊断预测[J]. 大气科学, 2001, 25(5):650-660.
    [16]
    刘科峰, 张韧, 洪梅, 等. 基于最小二乘支持向量机的副热带高压预测模型[J]. 应用气象学报, 2009, 20(3): 354.
    [17]
    杨杰, 封国林, 赵俊虎, 等. 夏季西太平洋副热带高压的客观定量化预测及其对汛期降水的指示[J]. 气象学报, 2012, 70(5): 1032.
    [18]
    贾亚俊, 胡轶佳, 钟中, 等. 夏季西太平洋副热带高压指数的统计预测模型[J]. 高原气象, 2015 (5): 1369-1378.
    [19]
    SUI C H, CHUNG P H, LI T. Interannual and interdecadal variability of the summertime western North Pacific subtropical high[J]. Geophysical Research Letters, 2007, 34(11) :93-104.
    [20]
    LU R, DING H, RYU C S, et al. Midlatitude westward propagating disturbances preceding intraseasonal oscillations of convection over the subtropical western North Pacific during summer[J]. Geophysical Research Letters, 2007, 34(21) :393-407.
    [21]
    ZHANG Z, KRISHNAMURTI T N. Ensemble forecasting of hurricane tracks[J]. Bulletin of the American Meteorological Society, 1997, 78(12): 2785-2795.
    [22]
    郑飞. ENSO集合预报研究[D]. 北京:中国科学院研究生院(大气物理研究所),2007.
    [23]
    周文友,智协飞.2009年夏季西太平洋台风路径和强度的多模式集成预报[J].气象科学,2012,32(5): 492-499.
    [24]
    林春泽, 智协飞, 韩艳, 等. 基于 TIGGE 资料的地面气温多模式超级集合预报[J]. 应用气象学报, 2009,20(6):706-712.
    [25]
    ZHI X, QI H, BAI Y, et al. A comparison of three kinds of multimodel ensemble forecast techniques based on the TIGGE data[J]. Acta Meteorologica Sinica, 2012, 26: 41-51.
    [26]
    崔慧慧, 智协飞. 基于 TIGGE 资料的地面气温延伸期多模式集成预报[J]. 大气科学学报, 2013, 36(2): 165-173.
    [27]
    智协飞, 季晓东, 张璟, 等. 基于 TIGGE 资料的地面气温和降水的多模式集成预报[J]. 大气科学学报, 2013, 36(3): 257-266.
    [28]
    RICHARDSON D, BUIZZA R, HAGEDORN R. Final report of the 1st Workshop on the THORPEX Interactive Grand Global Ensemble (TIGGE)[R]. World Meteorological Organization WMO/TD, 2005.
    [29]
    Sounding data[DB/OL].[2017-01-20].http://weather.uwyo.edu/upperair/seasia.html
    [30]
    TALAGRAND O, VAUTARD R, STRAUSS B. Evaluation of probabilistic prediction systems[C]//Proceedings of ECMWF Workshop on Predictability, 1997, 1: 25.
    [31]
    BRIER G W. Verification of forecasts expressed in terms of probability[J]. Monthly Weather Review, 1950, 78(1): 1-3.
    [32]
    李莉, 李应林, 田华, 等. T213 全球集合预报系统性误差订正研究[J]. 气象, 2011, 37(1): 31-38.
    [33]
    HAMILL T M, D'ENTREMONT R P, BUNTIN J T. A description of the air force real-time nephanalysis model[J]. Weather and Forecasting, 1992, 7(2): 288-306.
    [34]
    HAMILL T M, WHITAKER J S, SNYDER C. Distance-dependent filtering of background error covariance estimates in an ensemble Kalmanfilter[J]. Monthly Weather Review, 2001, 129(11): 2776-2790.
    [35]
    CARTWRIGHT T J, KRISHNAMURTI T N. Warm season mesoscale superensemble precipitation forecasts in the southeastern United States[J]. Weather and Forecasting, 2007, 22(4): 873-886.
    [36]
    KRISHNAMURTI T N, KISHTAWAL C M, ZHANG Z, et al. Multimodel ensemble forecasts for weather and seasonal climate[J]. Journal of Climate, 2000, 13(23): 4196-4216.
    [37]
    HE C, ZHI X, YOU Q, et al. Multi-model ensemble forecasts of tropical cyclones in 2010 and 2011 based on the Kalman Filter method[J]. Meteorology and Atmospheric Physics, 2015, 127(4): 467-479.
    [38]
    MURPHY A H, EPSTEIN E S. Skill scores and correlation coefficients in model verification[J]. Monthly Weather Review, 1989, 117(3): 572-582.
    [39]
    NIU R, ZHAI P. Synoptic verification of medium-extended-range forecasts of the Northwest Pacific subtropical high and South Asian high based on multi-center TIGGE data[J]. Acta Meteorologica Sinica, 2013, 27(5): 725-741.
    [40]
    NIU R, ZHAI P, ZHOU B. Evaluation of forecast performance of Asian summer monsoon low-level winds using the TIGGE dataset[J]. Weather and Forecasting, 2015, 30(2): 455-470.

    Article Metrics

    Article views (444) PDF downloads(248)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return