[1] |
CHA S W, COLELLA W, PRINZ F B. Fuel Cell Fundamentals[M]. New York: John Wiley & Sons, 2006: 8.
|
[2] |
MURRAY E P, TSAI T, BARNETT S A. A direct-methane fuel cell with a ceria-based anode[J]. Nature, 1999, 400(6745): 649-651.
|
[3] |
SANGTONGKITCHAROEN W, ASSABUMRUNGRAT S, PAVARAJARNV, et al. Comparison of carbon formation boundary in different modes of solid oxide fuel cells fueled by methane[J]. Journal of Power Sources, 2005, 142(1): 75-80.
|
[4] |
PETERS R, DAHL R, KLTTGEN U, et al. Internal reforming of methane in solid oxide fuel cell systems[J]. Journal of Power Sources, 2002, 106(1): 238-244.
|
[5] |
MBODJI M, COMMENGE J M, FALK L, et al. Steam methane reforming reaction process intensification by using a millistructured reactor: Experimental setup and model validation for global kinetic reaction rate estimation[J]. Chemical Engineering Journal, 2012, 207: 871-884.
|
[6] |
VIPARELLI P, VILLA P, BASILE F, et al. Catalyst based on BaZrO3 with different elements incorporated in the structure: Ⅱ. BaZr(1-x) RhxO3 systems for the production of syngas by partial oxidation of methane[J]. Applied Catalysis A: General, 2005, 280(2): 225-232.
|
[7] |
AHMED K, FOGER K. Kinetics of internal steam reforming of methane on Ni/YSZ-based anodes for solid oxide fuel cells[J]. Catalysis Today, 2000, 63(2): 479-487.
|
[8] |
BRUS G. Experimental and numerical studies on chemically reacting gas flow in the porous structure of a solid oxide fuel cells internal fuel reformer[J]. International Journal of Hydrogen Energy, 2012, 37(22): 17 225-17 234.
|
[9] |
DEGRD R, JOHNSEN E, KAROLIUSSEN H. Methane reforming on Ni/zirconia SOFC anodes[R]. Pennington, NJ: Electrochemical Society, 1995.
|
[10] |
LEE A L, ZABRANSKY R F, HUBER W J. Internal reforming development for solid oxide fuel cells[J]. Industrial & Engineering Chemistry Research, 1990, 29(5): 766-773.
|
[11] |
MOGENSEND. Methane steam reforming kinetics over Ni-YSZ anode materials for Solid Oxide Fuel Cells[D]. Technical University of Denmark: Topsoe Fuel Cell A/S, 2011.
|
[12] |
LIU J, BARNETT S A. Operation of anode-supported solid oxide fuel cells on methane and natural gas[J]. Solid State Ionics, 2003, 158(1):11-16.
|
[13] |
WANG B, ZHU J, LINZ. A theoretical framework for multiphysics modeling of methane fueled solid oxide fuel cell and analysis of low steam methane reforming kinetics[J]. Applied Energy, 2016, 176: 1-11.
|
[14] |
ZEPPIERI M, VILLA P L, VERDONEN, et al. Kinetic of methane steam reforming reaction over nickel-and rhodium-based catalysts[J]. Applied Catalysis A: General, 2010, 387(1): 147-154.
|
[15] |
BEBELIS S, ZERITIS A, TIROPANIC, et al. Intrinsic kinetics of the internal steam reforming of CH4 over a Ni-YSZ-cermet catalyst-electrode[J]. Industrial & Engineering Chemistry Research, 2000, 39(12): 4 920-4 927.
|
[16] |
BODER M, DITTMEYER R. Catalytic modification of conventional SOFC anodes with a view to reducing their activity for direct internal reforming of natural gas[J]. Journal of Power Sources, 2006, 155(1): 13-22.
|
[17] |
ACHENBACH E, RIENSCHE E. Methane/steam reforming kinetics for solid oxide fuel cells[J]. Journal of Power Sources, 1994, 52(2): 283-288.
|
[18] |
KING D L, STROHM JJ, WANG X, et al. Effect of nickel microstructure on methane steam-reforming activity of Ni-YSZ cermet anode catalyst[J]. Journal of Catalysis, 2008, 258(2): 356-365.
|
[19] |
WANG B, JIANG Z, LIN Z. Multi-physics modeling of solid oxide fuel cell fueled by methane and analysis of carbon deposition[J]. Chinese Journal of Chemical Physics, 2015, 28(3): 299-307.
|
[20] |
KRATZER P, HAMMER B, NO J K. A theoretical study of CH4 dissociation on pure and gold-alloyed Ni (111) surfaces[J]. The Journal of Chemical Physics, 1996, 105(13): 5 595-5 604.
|
[21] |
YANG H, WHITTENJ L. Dissociative chemisorption of CH4 on Ni(111)[J]. The Journal of Chemical Physics, 1992, 96(7): 5 529-5 537.
|
[22] |
STEWART C N, EHRLICH G. Dynamics of activated chemisorption: Methane on rhodium[J]. The Journal of Chemical Physics, 1975, 62(12): 4 672-4 682.
|
[23] |
LEMONIDOU A A, VASALOS I A. Carbon dioxide reforming of methane over 5 wt.% Ni/CaO-Al2O3 catalyst[J]. Applied Catalysis A: General, 2002, 228(1): 227-235.
|
[1] |
CHA S W, COLELLA W, PRINZ F B. Fuel Cell Fundamentals[M]. New York: John Wiley & Sons, 2006: 8.
|
[2] |
MURRAY E P, TSAI T, BARNETT S A. A direct-methane fuel cell with a ceria-based anode[J]. Nature, 1999, 400(6745): 649-651.
|
[3] |
SANGTONGKITCHAROEN W, ASSABUMRUNGRAT S, PAVARAJARNV, et al. Comparison of carbon formation boundary in different modes of solid oxide fuel cells fueled by methane[J]. Journal of Power Sources, 2005, 142(1): 75-80.
|
[4] |
PETERS R, DAHL R, KLTTGEN U, et al. Internal reforming of methane in solid oxide fuel cell systems[J]. Journal of Power Sources, 2002, 106(1): 238-244.
|
[5] |
MBODJI M, COMMENGE J M, FALK L, et al. Steam methane reforming reaction process intensification by using a millistructured reactor: Experimental setup and model validation for global kinetic reaction rate estimation[J]. Chemical Engineering Journal, 2012, 207: 871-884.
|
[6] |
VIPARELLI P, VILLA P, BASILE F, et al. Catalyst based on BaZrO3 with different elements incorporated in the structure: Ⅱ. BaZr(1-x) RhxO3 systems for the production of syngas by partial oxidation of methane[J]. Applied Catalysis A: General, 2005, 280(2): 225-232.
|
[7] |
AHMED K, FOGER K. Kinetics of internal steam reforming of methane on Ni/YSZ-based anodes for solid oxide fuel cells[J]. Catalysis Today, 2000, 63(2): 479-487.
|
[8] |
BRUS G. Experimental and numerical studies on chemically reacting gas flow in the porous structure of a solid oxide fuel cells internal fuel reformer[J]. International Journal of Hydrogen Energy, 2012, 37(22): 17 225-17 234.
|
[9] |
DEGRD R, JOHNSEN E, KAROLIUSSEN H. Methane reforming on Ni/zirconia SOFC anodes[R]. Pennington, NJ: Electrochemical Society, 1995.
|
[10] |
LEE A L, ZABRANSKY R F, HUBER W J. Internal reforming development for solid oxide fuel cells[J]. Industrial & Engineering Chemistry Research, 1990, 29(5): 766-773.
|
[11] |
MOGENSEND. Methane steam reforming kinetics over Ni-YSZ anode materials for Solid Oxide Fuel Cells[D]. Technical University of Denmark: Topsoe Fuel Cell A/S, 2011.
|
[12] |
LIU J, BARNETT S A. Operation of anode-supported solid oxide fuel cells on methane and natural gas[J]. Solid State Ionics, 2003, 158(1):11-16.
|
[13] |
WANG B, ZHU J, LINZ. A theoretical framework for multiphysics modeling of methane fueled solid oxide fuel cell and analysis of low steam methane reforming kinetics[J]. Applied Energy, 2016, 176: 1-11.
|
[14] |
ZEPPIERI M, VILLA P L, VERDONEN, et al. Kinetic of methane steam reforming reaction over nickel-and rhodium-based catalysts[J]. Applied Catalysis A: General, 2010, 387(1): 147-154.
|
[15] |
BEBELIS S, ZERITIS A, TIROPANIC, et al. Intrinsic kinetics of the internal steam reforming of CH4 over a Ni-YSZ-cermet catalyst-electrode[J]. Industrial & Engineering Chemistry Research, 2000, 39(12): 4 920-4 927.
|
[16] |
BODER M, DITTMEYER R. Catalytic modification of conventional SOFC anodes with a view to reducing their activity for direct internal reforming of natural gas[J]. Journal of Power Sources, 2006, 155(1): 13-22.
|
[17] |
ACHENBACH E, RIENSCHE E. Methane/steam reforming kinetics for solid oxide fuel cells[J]. Journal of Power Sources, 1994, 52(2): 283-288.
|
[18] |
KING D L, STROHM JJ, WANG X, et al. Effect of nickel microstructure on methane steam-reforming activity of Ni-YSZ cermet anode catalyst[J]. Journal of Catalysis, 2008, 258(2): 356-365.
|
[19] |
WANG B, JIANG Z, LIN Z. Multi-physics modeling of solid oxide fuel cell fueled by methane and analysis of carbon deposition[J]. Chinese Journal of Chemical Physics, 2015, 28(3): 299-307.
|
[20] |
KRATZER P, HAMMER B, NO J K. A theoretical study of CH4 dissociation on pure and gold-alloyed Ni (111) surfaces[J]. The Journal of Chemical Physics, 1996, 105(13): 5 595-5 604.
|
[21] |
YANG H, WHITTENJ L. Dissociative chemisorption of CH4 on Ni(111)[J]. The Journal of Chemical Physics, 1992, 96(7): 5 529-5 537.
|
[22] |
STEWART C N, EHRLICH G. Dynamics of activated chemisorption: Methane on rhodium[J]. The Journal of Chemical Physics, 1975, 62(12): 4 672-4 682.
|
[23] |
LEMONIDOU A A, VASALOS I A. Carbon dioxide reforming of methane over 5 wt.% Ni/CaO-Al2O3 catalyst[J]. Applied Catalysis A: General, 2002, 228(1): 227-235.
|