[1] |
FIELDS G M, METZNER R G. Hybrid car with electric and heat engine: U.S. Patent 4,351,405[P]. 1982-9-28.
|
[2] |
BACKHAUS S, SWIFT G W. A thermoacoustic Stirling heat engine[J]. Nature, 1999, 399(6734): 335-338.
|
[3] |
CEPERLEY P H. Gain and efficiency of a short traveling wave heat engine[J]. The Journal of the Acoustical Society of America, 1985, 77(3): 1 239-1 244.
|
[4] |
严子浚. 卡诺热机的最佳效率与功率间的关系[J]. 工程热物理学报, 1985, 6(1): 1-5.YAN Zijun. The relation between optimal efficiency and power of a Carnot heat engine[J]. Journal of Engineering Thermophysics, 1985, 6(1): 1-5.
|
[5] |
MCGINNIS R L, MCCUTCHEON J R, ELIMELECH M. A novel ammonia-carbon dioxide osmotic heat engine for power generation[J]. Journal of Membrane Science, 2007, 305(1): 13-19.
|
[6] |
CHA S W, COLELLA W, PRINZ F B. Fuel Cell Fundamentals[M]. New York: John Wiley & Sons, 2006: 231-233.
|
[7] |
LARMINIE J, DICKS A, MCDONALD M S. Fuel Cell Systems Explained[M]. New York: Wiley, 2003: 5-6.
|
[8] |
STEELE B C H, HEINZEL A. Materials for fuel-cell technologies[J]. Nature, 2001, 414(6861): 345-352.
|
[9] |
侯明,衣宝廉. 燃料电池技术发展现状与展望[J]. 电化学, 2011, 18(1): 1-13.HOU Ming, YI Baolian. Progress and perspective of fuel cell technology[J]. Journal of Electrochemistry, 2011, 18(1): 1-13.
|
[10] |
LIN R, LI B, HOU Y P, et al. Investigation of dynamic driving cycle effect on performance degradation and micro-structure change of PEM fuel cell[J]. International Journal of Hydrogen Energy, 2009, 34(5): 2 369-2 376.
|
[11] |
于兴文, 黄学杰, 陈立泉. 固体氧化物燃料电池研究进展[J]. 电池, 2002, 32(2): 110-112.YUXingwen, HUANG Xuejie, CHEN Liquan. Development of solid oxide fuel cells[J]. Battery Bimonthly, 2002, 32(2): 110-112.
|
[12] |
NI M, LEUNG M K H, LEUNG D Y C. Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC)[J]. International Journal of Hydrogen Energy, 2008, 33(9): 2 337-2 354.
|
[13] |
SCHILLER G, ANSAR A, LANG M, et al. High temperature water electrolysis using metal supported solid oxide electrolyser cells (SOEC)[J]. Journal of Applied Electrochemistry, 2009, 39(2): 293-301.
|
[14] |
娄马宝. 低热值气体燃料 (包括高炉煤气) 的利用[J]. 燃气轮机技术, 2000, 13(3): 16-18.
|
[15] |
王宝轩.碳基固体氧化物燃料电池理论研究与多物理场模拟[D]. 合肥:中国科学技术大学,2013.
|
[16] |
WOOD D L, JUNG S Y, NGUYEN T V. Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells[J]. Electrochimica Acta, 1998, 43(24): 3 795-3 809.
|
[17] |
姚春德, 夏琦, 陈绪平, 等. 柴油在甲醇氛围中高效清洁燃烧机理[J]. 天津大学学报, 2011, 44(8): 671-676.YAO Chunde,XIA Qi,CHEN Xuping, et al. Mechanism of diesel fuel burning in methanol mixture with high efficiency and low emission[J]. Journal of Tianjin University, 2011, 44(8): 671-676.
|
[18] |
VANCOILLIE J, DEMUYNCK J, SILEGHEM L, et al. Comparison of the renewable transportation fuels, hydrogen and methanol formed from hydrogen, with gasoline-engine efficiency study[J]. International Journal of Hydrogen Energy, 2012, 37(12): 9 914-9 924.
|
[1] |
FIELDS G M, METZNER R G. Hybrid car with electric and heat engine: U.S. Patent 4,351,405[P]. 1982-9-28.
|
[2] |
BACKHAUS S, SWIFT G W. A thermoacoustic Stirling heat engine[J]. Nature, 1999, 399(6734): 335-338.
|
[3] |
CEPERLEY P H. Gain and efficiency of a short traveling wave heat engine[J]. The Journal of the Acoustical Society of America, 1985, 77(3): 1 239-1 244.
|
[4] |
严子浚. 卡诺热机的最佳效率与功率间的关系[J]. 工程热物理学报, 1985, 6(1): 1-5.YAN Zijun. The relation between optimal efficiency and power of a Carnot heat engine[J]. Journal of Engineering Thermophysics, 1985, 6(1): 1-5.
|
[5] |
MCGINNIS R L, MCCUTCHEON J R, ELIMELECH M. A novel ammonia-carbon dioxide osmotic heat engine for power generation[J]. Journal of Membrane Science, 2007, 305(1): 13-19.
|
[6] |
CHA S W, COLELLA W, PRINZ F B. Fuel Cell Fundamentals[M]. New York: John Wiley & Sons, 2006: 231-233.
|
[7] |
LARMINIE J, DICKS A, MCDONALD M S. Fuel Cell Systems Explained[M]. New York: Wiley, 2003: 5-6.
|
[8] |
STEELE B C H, HEINZEL A. Materials for fuel-cell technologies[J]. Nature, 2001, 414(6861): 345-352.
|
[9] |
侯明,衣宝廉. 燃料电池技术发展现状与展望[J]. 电化学, 2011, 18(1): 1-13.HOU Ming, YI Baolian. Progress and perspective of fuel cell technology[J]. Journal of Electrochemistry, 2011, 18(1): 1-13.
|
[10] |
LIN R, LI B, HOU Y P, et al. Investigation of dynamic driving cycle effect on performance degradation and micro-structure change of PEM fuel cell[J]. International Journal of Hydrogen Energy, 2009, 34(5): 2 369-2 376.
|
[11] |
于兴文, 黄学杰, 陈立泉. 固体氧化物燃料电池研究进展[J]. 电池, 2002, 32(2): 110-112.YUXingwen, HUANG Xuejie, CHEN Liquan. Development of solid oxide fuel cells[J]. Battery Bimonthly, 2002, 32(2): 110-112.
|
[12] |
NI M, LEUNG M K H, LEUNG D Y C. Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC)[J]. International Journal of Hydrogen Energy, 2008, 33(9): 2 337-2 354.
|
[13] |
SCHILLER G, ANSAR A, LANG M, et al. High temperature water electrolysis using metal supported solid oxide electrolyser cells (SOEC)[J]. Journal of Applied Electrochemistry, 2009, 39(2): 293-301.
|
[14] |
娄马宝. 低热值气体燃料 (包括高炉煤气) 的利用[J]. 燃气轮机技术, 2000, 13(3): 16-18.
|
[15] |
王宝轩.碳基固体氧化物燃料电池理论研究与多物理场模拟[D]. 合肥:中国科学技术大学,2013.
|
[16] |
WOOD D L, JUNG S Y, NGUYEN T V. Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells[J]. Electrochimica Acta, 1998, 43(24): 3 795-3 809.
|
[17] |
姚春德, 夏琦, 陈绪平, 等. 柴油在甲醇氛围中高效清洁燃烧机理[J]. 天津大学学报, 2011, 44(8): 671-676.YAO Chunde,XIA Qi,CHEN Xuping, et al. Mechanism of diesel fuel burning in methanol mixture with high efficiency and low emission[J]. Journal of Tianjin University, 2011, 44(8): 671-676.
|
[18] |
VANCOILLIE J, DEMUYNCK J, SILEGHEM L, et al. Comparison of the renewable transportation fuels, hydrogen and methanol formed from hydrogen, with gasoline-engine efficiency study[J]. International Journal of Hydrogen Energy, 2012, 37(12): 9 914-9 924.
|