[1] |
GENCAY R, DACOROGNA M, MULLER U A, et al. An Introduction to High-Frequency Finance[M]. San Diego, CA:Academic Press, 2001.
|
[2] |
SALVATIERRA I D L, PATTONA J. Dynamic copula models and high frequency data[J]. Journal of Empirical Finance, 2015, 30: 120-135.
|
[3] |
HANSEN P R, HOREL G, LUNDEA, et al. A Markova chain estimator of multivariate volatility from high frequency data[M]// The Fascination of Probability, Statistics and Their Applications. Switzerland: Springer International Publishing, 2016: 361-394.
|
[4] |
KOTKATVUORI-RNBERG J. Measuring actual daily volatility from high frequency intraday returns of the S&P futures and index observations[J]. Expert Systems with Applications, 2016, 43: 213-222.
|
[5] |
HANSEN P R, HUANG Z. Exponential garch modeling with realized measures of volatility[J]. Journal of Business & Economic Statistics, 2016, 34(2): 269-287.
|
[6] |
雷鸣, 缪柏其. 运用生存模型对上证指数涨跌天数的研究[J]. 运筹与管理, 2003, 12(6): 87-91.LEI Ming, MIAO Baiqi. Study of successive rises and falls of days with survival analysis[J]. Operations Research and Management Science, 2003, 12(6): 87-91.
|
[7] |
雷鸣, 叶五一, 缪柏其, 等. 生存分析与股指涨跌的概率推断[J]. 管理科学学报, 2010, 13(4): 57-66.LEI Ming, YE Wuyi, MIAO Baiqi, et al. Survival analysis and the probability inference about the stock index[J]. Journal of Management Sciences in China, 2010, 13(4): 57-66.
|
[8] |
胡心瀚, 叶五一, 缪柏其. 基于Copula-ACD 模型的股票连涨和连跌收益率风险分析[J]. 系统工程理论与实践, 2010, 30(2): 298-304.HU Xinhan, YE Wuyi, MIAO Baiqi. Risk analysis of continuously rising and falling stock yield based on Copula-ACD method[J]. Systems Engineering: Theory & Practice, 2010, 30(2): 298-304.
|
[9] |
叶五一, 李磊, 缪柏其. 高频连涨连跌收益率的相依结构以及CVaR分析[J]. 中国管理科学, 2013, 21(1): 8-15.YE Wuyi, LI Lei, MIAO Baiqi. Dependence structure and CVaR analysis of continuously rising and falling return[J]. Chinese Journal of Management Science, 2013, 21(1): 8-15.
|
[10] |
黄飞, 谭常春. 运用变点理论对连涨连跌收益率的 Bayes 分析[J]. 合肥工业大学学报: 自然科学版, 2014, 37(2): 248-252.HUANG Fei, TAN Changchun. Application of change point theory in successive rises and falls of returns with Bayes analysis[J]. Journal of Hefei University of Technology (Natural Science), 2014, 37(2): 248-252.
|
[11] |
GRANGERC W J. Investigating causal relations by econometric models and cross-spectral methods [J]. Econometrica, 1969, 37: 424-438.
|
[12] |
GRANGER C W J. Some recent developments in a concept of causality[J]. Journal of Econometrics, 1988, 39: 199-211.
|
[13] |
WANG X, ZHENG T, ZHU Y. Money-output Granger causal dynamics in China[J]. Economic Modelling, 2014, 43: 192-200.
|
[14] |
ALZAHRANI M, MASIH M, AL-TITI O. Linear and non-linear Granger causality between oil spot and futures prices: A wavelet based test[J]. Journal of International Money and Finance, 2014, 48: 175-201.
|
[15] |
CHUANG C C, KUAN C M, LIN H. Causality in quantiles and dynamic stock return-volume relations[J]. Journal of Banking & Finance, 2009, 33(7): 1 351-1 360.
|
[16] |
HU M, LIANG H. A copula approach to assessing Granger causality[J]. Neuroimage, 2014, 100: 125-134.
|
[17] |
YANG Z, TU A H, ZENG Y. Dynamic linkages between Asian stock prices and exchange rates: New evidence from causality in quantiles[J]. Applied Economics, 2014, 46(11): 1 184-1 201.
|
[18] |
LEE T H, YANG W. Granger-causality in quantiles between financial markets: Using copula approach[J]. International Review of Financial Analysis, 2014, 33: 70-78.
|
[19] |
吴亮, 邓明. 中国股票市场收益率与交易量的非对称因果关系研究——基于分位数Granger因果检验[J]. 上海金融, 2014 (6): 75-81.
|
[20] |
罗雪玲. 中美股市的联动性分析——基于沪深 300 与道琼斯工业平均指数的实证研究[J]. 成都理工大学学报: 社会科学版, 2014, 22(1): 67-72.LUO Xueling. Analysis of the co-movement between Chinas and U.S. stock markets: Based on the CSI 300 and the Dow Jones Industrial Average Index[J]. Journal of Chengdu University of Technology (Social Sciences), 2014, 22(1): 67-72.
|
[21] |
CHERNOZHUKOV V, UMANTSEVL. Conditional value-at-risk: Aspects of modeling and estimation[J]. Empirical Economics, 2001, 26(1): 271-292.
|
[22] |
GIACOMINI R, KOMUNJER I. Evaluation and combination of conditional quantile forecasts[J]. Journal of Business & Economic Statistics, 2005, 23(4): 416-431.
|
[23] |
DUFFIE D, PAN J. An overview of value at risk[J]. The Journal of Derivatives, 1997, 4(3): 7-49.
|
[24] |
KOENKER R, BASSETT Jr G. Regression quantiles[J]. Econometrica, 1978, 46(1): 33-50.
|
[25] |
KUPIEC P H. Techniques for verifying the accuracy of risk measurement models[J]. The Journal of Derivatives, 1995, 3(2): 73-84.
|
[1] |
GENCAY R, DACOROGNA M, MULLER U A, et al. An Introduction to High-Frequency Finance[M]. San Diego, CA:Academic Press, 2001.
|
[2] |
SALVATIERRA I D L, PATTONA J. Dynamic copula models and high frequency data[J]. Journal of Empirical Finance, 2015, 30: 120-135.
|
[3] |
HANSEN P R, HOREL G, LUNDEA, et al. A Markova chain estimator of multivariate volatility from high frequency data[M]// The Fascination of Probability, Statistics and Their Applications. Switzerland: Springer International Publishing, 2016: 361-394.
|
[4] |
KOTKATVUORI-RNBERG J. Measuring actual daily volatility from high frequency intraday returns of the S&P futures and index observations[J]. Expert Systems with Applications, 2016, 43: 213-222.
|
[5] |
HANSEN P R, HUANG Z. Exponential garch modeling with realized measures of volatility[J]. Journal of Business & Economic Statistics, 2016, 34(2): 269-287.
|
[6] |
雷鸣, 缪柏其. 运用生存模型对上证指数涨跌天数的研究[J]. 运筹与管理, 2003, 12(6): 87-91.LEI Ming, MIAO Baiqi. Study of successive rises and falls of days with survival analysis[J]. Operations Research and Management Science, 2003, 12(6): 87-91.
|
[7] |
雷鸣, 叶五一, 缪柏其, 等. 生存分析与股指涨跌的概率推断[J]. 管理科学学报, 2010, 13(4): 57-66.LEI Ming, YE Wuyi, MIAO Baiqi, et al. Survival analysis and the probability inference about the stock index[J]. Journal of Management Sciences in China, 2010, 13(4): 57-66.
|
[8] |
胡心瀚, 叶五一, 缪柏其. 基于Copula-ACD 模型的股票连涨和连跌收益率风险分析[J]. 系统工程理论与实践, 2010, 30(2): 298-304.HU Xinhan, YE Wuyi, MIAO Baiqi. Risk analysis of continuously rising and falling stock yield based on Copula-ACD method[J]. Systems Engineering: Theory & Practice, 2010, 30(2): 298-304.
|
[9] |
叶五一, 李磊, 缪柏其. 高频连涨连跌收益率的相依结构以及CVaR分析[J]. 中国管理科学, 2013, 21(1): 8-15.YE Wuyi, LI Lei, MIAO Baiqi. Dependence structure and CVaR analysis of continuously rising and falling return[J]. Chinese Journal of Management Science, 2013, 21(1): 8-15.
|
[10] |
黄飞, 谭常春. 运用变点理论对连涨连跌收益率的 Bayes 分析[J]. 合肥工业大学学报: 自然科学版, 2014, 37(2): 248-252.HUANG Fei, TAN Changchun. Application of change point theory in successive rises and falls of returns with Bayes analysis[J]. Journal of Hefei University of Technology (Natural Science), 2014, 37(2): 248-252.
|
[11] |
GRANGERC W J. Investigating causal relations by econometric models and cross-spectral methods [J]. Econometrica, 1969, 37: 424-438.
|
[12] |
GRANGER C W J. Some recent developments in a concept of causality[J]. Journal of Econometrics, 1988, 39: 199-211.
|
[13] |
WANG X, ZHENG T, ZHU Y. Money-output Granger causal dynamics in China[J]. Economic Modelling, 2014, 43: 192-200.
|
[14] |
ALZAHRANI M, MASIH M, AL-TITI O. Linear and non-linear Granger causality between oil spot and futures prices: A wavelet based test[J]. Journal of International Money and Finance, 2014, 48: 175-201.
|
[15] |
CHUANG C C, KUAN C M, LIN H. Causality in quantiles and dynamic stock return-volume relations[J]. Journal of Banking & Finance, 2009, 33(7): 1 351-1 360.
|
[16] |
HU M, LIANG H. A copula approach to assessing Granger causality[J]. Neuroimage, 2014, 100: 125-134.
|
[17] |
YANG Z, TU A H, ZENG Y. Dynamic linkages between Asian stock prices and exchange rates: New evidence from causality in quantiles[J]. Applied Economics, 2014, 46(11): 1 184-1 201.
|
[18] |
LEE T H, YANG W. Granger-causality in quantiles between financial markets: Using copula approach[J]. International Review of Financial Analysis, 2014, 33: 70-78.
|
[19] |
吴亮, 邓明. 中国股票市场收益率与交易量的非对称因果关系研究——基于分位数Granger因果检验[J]. 上海金融, 2014 (6): 75-81.
|
[20] |
罗雪玲. 中美股市的联动性分析——基于沪深 300 与道琼斯工业平均指数的实证研究[J]. 成都理工大学学报: 社会科学版, 2014, 22(1): 67-72.LUO Xueling. Analysis of the co-movement between Chinas and U.S. stock markets: Based on the CSI 300 and the Dow Jones Industrial Average Index[J]. Journal of Chengdu University of Technology (Social Sciences), 2014, 22(1): 67-72.
|
[21] |
CHERNOZHUKOV V, UMANTSEVL. Conditional value-at-risk: Aspects of modeling and estimation[J]. Empirical Economics, 2001, 26(1): 271-292.
|
[22] |
GIACOMINI R, KOMUNJER I. Evaluation and combination of conditional quantile forecasts[J]. Journal of Business & Economic Statistics, 2005, 23(4): 416-431.
|
[23] |
DUFFIE D, PAN J. An overview of value at risk[J]. The Journal of Derivatives, 1997, 4(3): 7-49.
|
[24] |
KOENKER R, BASSETT Jr G. Regression quantiles[J]. Econometrica, 1978, 46(1): 33-50.
|
[25] |
KUPIEC P H. Techniques for verifying the accuracy of risk measurement models[J]. The Journal of Derivatives, 1995, 3(2): 73-84.
|