[1] |
BARBERIS N, HUANG M, SANTOS T.Prospect theory and asset prices[J].Quarterly Journal of Economics, 2001, 116: 1-53.
|
[2] |
BERKELAAR A, KOUWENBERG R, POST T.Optimal portfolio choice under loss aversion[J].The Review of Economics and Statistics, 2004, 86(4): 973-987.
|
[3] |
BUCKDAHN R, LI J.Stochastic differential games and viscosity solutions of Hamilton-Jacobi-Bellman-Isaacs equations[J].SIAM Journal on Control and Optimization, 2004, 47(1):444-475.
|
[4] |
CHEUNG H L A.Utility maximisation: Non-concave utility and non-linear expectation [D].Oxford: Mathematical Institute, University of Oxford, 2011.
|
[5] |
FLEMING W H, SONER H M.Controlled Markov Processes and Viscosity Solutions [M].2nd edition.New York: Springer-Verlag, 2006.
|
[6] |
JIN H, ZHOU X Y.Behavioral portfolio selection in continuous time[J].Mathematical Finance, 2008, 18(3): 385-426.
|
[7] |
KAHNEMAN D, TVERSKY A.Prospect theory: An analysis of decision under risk[J].Econometrica, 1979, 47: 263-290.
|
[8] |
KARATZAS I, SHREVE S E.Methods of Mathematical Finance[M].New York: Springer-Verlag, 1998.
|
[9] |
KARATZAS I, LEHOCZKY J P, SHREVE S E.Optimal portfolio and consumption decisions for a “small investor” on a finite horizon[J].SIAM Journal of Control and Optimizaiton, 1987, 25(6): 1 557-1 586.
|
[10] |
KUSHNER H J, DUPUIS P G.Numerical Methods for Stochastic Control Problems in Continuous Time[M].New York: Springer-Verlag, 1992.
|
[11] |
MI H, ZHANG S G.Continuous-time portfolio selection with loss aversion in an incomplete market [J].Operations Research Transactions, 2012, 16(1): 1-12.
|
[12] |
PHAM H.Continuous-time Stochastic Control and Optimization with Financial Applications [M].New York: Springer-Verlag, 2009.
|
[13] |
SHREVE S E.Stochastic Calculus for Finance Ⅱ: Continuous-Time Models [M].New York: Springer, 2004.
|
[14] |
TVERSKY A, KAHNEMAN D.Advances in prospect theory: Cumulative representation of uncertainty [J].Journal of Risk and Uncertainty, 1992, 5: 297-323.
|
[15] |
YONG J M, ZHOU X Y.Stochastic Controls: Hamiltonian Systems and HJB Equations [M].New York: Springer-Verlag, 1999.
|
[16] |
ZHOU X Y.Mathematicalising behavioural finance [C]// Proceedings of the International Congress of Mathematicians, Hyderabad, India.Delhi: Hindustan Book Agency, 2010.
|
[17] |
张松.行为金融学中的资产组合选择问题[D].北京:北京大学,2011.Zhang S. Portfolio selection in behavioral finance[D].Beijing: Peking University, 2011.
|
[18] |
ZHANG S, JIN H Q, ZHOU X Y.Behavioral portfolio selection with loss control[J].Acta Mathematica Sinica, English Series, 2011, 27(2): 255-274.
|
[1] |
BARBERIS N, HUANG M, SANTOS T.Prospect theory and asset prices[J].Quarterly Journal of Economics, 2001, 116: 1-53.
|
[2] |
BERKELAAR A, KOUWENBERG R, POST T.Optimal portfolio choice under loss aversion[J].The Review of Economics and Statistics, 2004, 86(4): 973-987.
|
[3] |
BUCKDAHN R, LI J.Stochastic differential games and viscosity solutions of Hamilton-Jacobi-Bellman-Isaacs equations[J].SIAM Journal on Control and Optimization, 2004, 47(1):444-475.
|
[4] |
CHEUNG H L A.Utility maximisation: Non-concave utility and non-linear expectation [D].Oxford: Mathematical Institute, University of Oxford, 2011.
|
[5] |
FLEMING W H, SONER H M.Controlled Markov Processes and Viscosity Solutions [M].2nd edition.New York: Springer-Verlag, 2006.
|
[6] |
JIN H, ZHOU X Y.Behavioral portfolio selection in continuous time[J].Mathematical Finance, 2008, 18(3): 385-426.
|
[7] |
KAHNEMAN D, TVERSKY A.Prospect theory: An analysis of decision under risk[J].Econometrica, 1979, 47: 263-290.
|
[8] |
KARATZAS I, SHREVE S E.Methods of Mathematical Finance[M].New York: Springer-Verlag, 1998.
|
[9] |
KARATZAS I, LEHOCZKY J P, SHREVE S E.Optimal portfolio and consumption decisions for a “small investor” on a finite horizon[J].SIAM Journal of Control and Optimizaiton, 1987, 25(6): 1 557-1 586.
|
[10] |
KUSHNER H J, DUPUIS P G.Numerical Methods for Stochastic Control Problems in Continuous Time[M].New York: Springer-Verlag, 1992.
|
[11] |
MI H, ZHANG S G.Continuous-time portfolio selection with loss aversion in an incomplete market [J].Operations Research Transactions, 2012, 16(1): 1-12.
|
[12] |
PHAM H.Continuous-time Stochastic Control and Optimization with Financial Applications [M].New York: Springer-Verlag, 2009.
|
[13] |
SHREVE S E.Stochastic Calculus for Finance Ⅱ: Continuous-Time Models [M].New York: Springer, 2004.
|
[14] |
TVERSKY A, KAHNEMAN D.Advances in prospect theory: Cumulative representation of uncertainty [J].Journal of Risk and Uncertainty, 1992, 5: 297-323.
|
[15] |
YONG J M, ZHOU X Y.Stochastic Controls: Hamiltonian Systems and HJB Equations [M].New York: Springer-Verlag, 1999.
|
[16] |
ZHOU X Y.Mathematicalising behavioural finance [C]// Proceedings of the International Congress of Mathematicians, Hyderabad, India.Delhi: Hindustan Book Agency, 2010.
|
[17] |
张松.行为金融学中的资产组合选择问题[D].北京:北京大学,2011.Zhang S. Portfolio selection in behavioral finance[D].Beijing: Peking University, 2011.
|
[18] |
ZHANG S, JIN H Q, ZHOU X Y.Behavioral portfolio selection with loss control[J].Acta Mathematica Sinica, English Series, 2011, 27(2): 255-274.
|