[1] |
ARONSZAJN N. Theory of reproducing kernels[J]. Transactions of the American Mathematical Society, 1950, 68(3): 337-404.
|
[2] |
BICKEL P J, KLAASSEN C A J, RITOV Y, et al. Efficient and Adaptive Estimation for Semiparametric Models[M]. Baltimore, MD: Johns Hopkins University Press, 1993.
|
[3] |
COOK R D. Regression Graphics: Ideas for Studying Regressions through Graphics[M]. New York: Wiley, 1998.
|
[4] |
COOK R D, LI B. Dimension reduction for conditional mean in regression[J]. The Annals of Statistics, 2002, 30(2): 455-474.
|
[5] |
CUI Wenquan, WU Chenglong. An approach to estimating nonlinear sufficient dimension reduction subspace for censored survival data[J]. Journal of University of Science and Technology of China, 2015, 45(9): 709-716.
|
[6] |
FERR L, VILLA N. Multilayer perceptron with functional inputs: An inverse regression approach[J]. Scandinavian Journal of Statistics, 2006, 33(4): 807-823.
|
[7] |
FUKUMIZU K, BACH F R, JORDAN M I. Kernel dimension reduction in regression[J]. The Annals of Statistics, 2009, 37(4): 1 871- 1 905.
|
[8] |
LI L, YIN X. Sliced inverse regression with regularizations[J]. Biometrics, 2008, 64(1): 124-131.
|
[9] |
LI K C. Sliced inverse regression for dimension reduction[J]. Journal of the American Statistical Association, 1991, 86(414): 316-327.
|
[10] |
MA Y, ZHU L. A review on dimension reduction[J]. International Statistical Review, 2013, 81(1): 134-150.
|
[11] |
MA Y, ZHU L. A semiparametric approach to dimension reduction[J]. Journal of the American Statistical Association, 2012, 107(497): 168-179.
|
[12] |
SCHLKOPF B, SMOLA A J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond[M]. Cambridge, MA: MIT Press, 2001.
|
[13] |
TSIATIS A A. Semiparametric Theory and Missing Data[M]. New York: Springer, 2006.
|
[14] |
WU Q, LIANG F, MUKHERJEE S. Consistency of regularized sliced inverse regression for kernel models[R].Durham, NC: Duke University; IL: University of Illinois Urbana-Champaign, 2008.
|
[15] |
WU H M. Kernel sliced inverse regression with applications to classification[J]. Journal of Computational and Graphical Statistics, 2008, 17(3): 590-610.
|
[16] |
ZHONG W, ZENG P, MA P, et al. RSIR: regularized sliced inverse regression for motif discovery[J]. Bioinformatics, 2005, 21(22): 4 169-4 175.
|
[17] |
COOK R D, WEISBERG S. Discussion of “sliced inverse regression for dimension reduction”[J]. Journal of the American Statistical Association, 1991, 86: 28-33.
|
[18] |
LI B, WANG S. On directional regression for dimension reduction[J]. Journal of the American Statistical Association, 2007, 102(479): 997-1 008.
|
[19] |
Wu H M. Kernel sliced inverse regression with applications to classification[J]. Journal of Computational and Graphical Statistics, 2008, 17(3): 590-610.
|
[20] |
KENJI F, FRANCIS R B, MICHAEL I J. Kernel dimension reduction in regression[J]. The Annals of Statistics, 2009, 37(4): 1 871-1 905.
|
[21] |
WU Q, LIANG F, MUKHERJEE S. Kernel sliced inverse regression: regularization and consistency[J]. Abstract and Applied Analysis, 2013: 540725.
|
[1] |
ARONSZAJN N. Theory of reproducing kernels[J]. Transactions of the American Mathematical Society, 1950, 68(3): 337-404.
|
[2] |
BICKEL P J, KLAASSEN C A J, RITOV Y, et al. Efficient and Adaptive Estimation for Semiparametric Models[M]. Baltimore, MD: Johns Hopkins University Press, 1993.
|
[3] |
COOK R D. Regression Graphics: Ideas for Studying Regressions through Graphics[M]. New York: Wiley, 1998.
|
[4] |
COOK R D, LI B. Dimension reduction for conditional mean in regression[J]. The Annals of Statistics, 2002, 30(2): 455-474.
|
[5] |
CUI Wenquan, WU Chenglong. An approach to estimating nonlinear sufficient dimension reduction subspace for censored survival data[J]. Journal of University of Science and Technology of China, 2015, 45(9): 709-716.
|
[6] |
FERR L, VILLA N. Multilayer perceptron with functional inputs: An inverse regression approach[J]. Scandinavian Journal of Statistics, 2006, 33(4): 807-823.
|
[7] |
FUKUMIZU K, BACH F R, JORDAN M I. Kernel dimension reduction in regression[J]. The Annals of Statistics, 2009, 37(4): 1 871- 1 905.
|
[8] |
LI L, YIN X. Sliced inverse regression with regularizations[J]. Biometrics, 2008, 64(1): 124-131.
|
[9] |
LI K C. Sliced inverse regression for dimension reduction[J]. Journal of the American Statistical Association, 1991, 86(414): 316-327.
|
[10] |
MA Y, ZHU L. A review on dimension reduction[J]. International Statistical Review, 2013, 81(1): 134-150.
|
[11] |
MA Y, ZHU L. A semiparametric approach to dimension reduction[J]. Journal of the American Statistical Association, 2012, 107(497): 168-179.
|
[12] |
SCHLKOPF B, SMOLA A J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond[M]. Cambridge, MA: MIT Press, 2001.
|
[13] |
TSIATIS A A. Semiparametric Theory and Missing Data[M]. New York: Springer, 2006.
|
[14] |
WU Q, LIANG F, MUKHERJEE S. Consistency of regularized sliced inverse regression for kernel models[R].Durham, NC: Duke University; IL: University of Illinois Urbana-Champaign, 2008.
|
[15] |
WU H M. Kernel sliced inverse regression with applications to classification[J]. Journal of Computational and Graphical Statistics, 2008, 17(3): 590-610.
|
[16] |
ZHONG W, ZENG P, MA P, et al. RSIR: regularized sliced inverse regression for motif discovery[J]. Bioinformatics, 2005, 21(22): 4 169-4 175.
|
[17] |
COOK R D, WEISBERG S. Discussion of “sliced inverse regression for dimension reduction”[J]. Journal of the American Statistical Association, 1991, 86: 28-33.
|
[18] |
LI B, WANG S. On directional regression for dimension reduction[J]. Journal of the American Statistical Association, 2007, 102(479): 997-1 008.
|
[19] |
Wu H M. Kernel sliced inverse regression with applications to classification[J]. Journal of Computational and Graphical Statistics, 2008, 17(3): 590-610.
|
[20] |
KENJI F, FRANCIS R B, MICHAEL I J. Kernel dimension reduction in regression[J]. The Annals of Statistics, 2009, 37(4): 1 871-1 905.
|
[21] |
WU Q, LIANG F, MUKHERJEE S. Kernel sliced inverse regression: regularization and consistency[J]. Abstract and Applied Analysis, 2013: 540725.
|