ISSN 0253-2778

CN 34-1054/N

open
Open AccessOpen Access JUSTC Original Paper

Entangled state representation for mesoscopic persistent current ring and its phase-angular momentum

Cite this: JUSTC, 2016, 46(8): 652-656
https://doi.org/10.3969/j.issn.0253-2778.2016.08.005
More Information
  • Received Date: January 28, 2016
  • Revised Date: May 20, 2016
  • Accepted Date: May 20, 2016
  • Published Date: August 29, 2016
  • The entangled state representation was establish,in which the phase operator and the angular momentum operator have been applied, to realize the phase-angular momentum quantization of mesoscopic persistent current ring (MPCR) , and derive its energy spectrum. In addition,it was revealed that the ascending/lowering of angular momentum corresponds to the currents increase/decrease through angular momentum representation for the persistent current ring.

Catalog

    {{if article.pdfAccess}}
    {{if article.articleBusiness.pdfLink && article.articleBusiness.pdfLink != ''}} {{else}} {{/if}}PDF
    {{/if}}
    XML
    [1]
    AHARONOV Y, BOHM D. Significance of electromagnetic potentials in the quantum theory [J]. Phys Rev, 1959, 115: 485-491.
    [2]
    BTTIKER M, IMRY Y, LANDAUER R, et al. Generalized many-channel conductance formula with application to small rings [J]. Phys Rev B, 1985, 31: 6 207-6 215.
    [3]
    AHARONOV Y, CASHER A. Topological quantum effects for neutral particles [J] Phys Rev Lett, 1984, 53: 319-321.
    [4]
    REZNIK B, AHARINOV Y. Question of the nonlocality of the Aharonov-Casher effect[J]. Phys Rev D, 1989, 40: 4 178-4 183.
    [5]
    DEO P S, JAYANNAVAR A M. Quantum waveguide transport in serial stub and loop structures[J]. Phys Rev B, 1994, 50:11629.
    [6]
    DEO P S, JAYANNAVAR A M. Persistent currents in the presence of a transport current[J]. Phys Rev B, 1995, 51:10175.
    [7]
    TAKAI D, OHTA K. Quantum transport through a one-dimensional ring with tunnel junctions[J]. Phys Rev B, 1995, 51:11132.
    [8]
    MA Mingming, DING Jianwen, CHEN Hongbo, et al. Effects of gradient disorder on persistent currents in two-dimensional mesoscopic rings[J]. Acta Phys Sin, 2009, 58(4): 2 226-2 230.
    马明明, 丁建文, 陈宏波,等. 二维介观环中持续电流的梯度无序效应[J]. 物理学报,2009, 58(4):2 226-2 230.
    [9]
    WU Shaoquan, HE Zhong, YAN Conghua, et al. Kondo effect in parallel double quantum dots embedded in a mesoscopic ring [J] Acta Phys Sin,2006,55(3): 1 413-1 418.
    吴绍全,何忠,阎从华,等. 嵌入并联耦合双量子点介观环系统中的近藤效应[J].物理学报,2006,55(3):1 413-1 418.
    [10]
    FU Bang, DENG Wenji. General solutions to spin transportation of electrons through equilateral polygon quantum rings with Rashba spin-orbit interaction[J]. Acta Phys Sin, 2010, 59(4):2 739-2 745.
    付邦,邓文基. 任意正多边形量子环自旋输运的普遍解[J].物理学报,2010, 59(4):2 739-2 745.
    [11]
    HUANG Rui, WU Shaoquan. Spin-polarized transport through T-shaped quantum dot system[J]. Chinese Journal of Low Temperature Physics, 2010,32(4):284-288.
    黄睿,吴绍全. T型量子点结构中的自旋极化输运过程[J]. 低温物理学报, 2010,32(4):284-288.
    [12]
    DAI Nan, DENG Wenji. Persistent currents in mesoscopic graphene rings with armchair edges[J]. Acta Phys Sin, 2015, 64(1): 017302.
    代楠,邓文基.扶手椅型石墨烯介观环中的持续电流[J].物理学报,2015, 64(1): 017302.
    [13]
    JOHNSON M H, LIPPMANN B A. Motion in a constant magnetic field[J]. Physical Review, 1946, 76: 828-832.
    [14]
    LOUISELL W H. Quantum Statistical Properties of Radiation [M].New York: John Wiley, 1973
    [15]
    FAN H Y, KLAUDER J R.Eigenvectors of two particless relative position and total momentum[J]. Phys Rev A,1994, 49: 704-707.
    [16]
    FAN Hongyi, FAN Yue.Representation of two-mode squeezing operator[J]. Phys Rev A, 1996, 54: 958-960.
    [17]
    FAN Hongyi. Phase state as a cooper-pair number: Phase minimum uncertainty state for Josephson junction[J]. Inter J Mod Phys B, 2003, 17: 2 599-2 608.)

    Article Metrics

    Article views (93) PDF downloads (259)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return