[1] |
Liang H Y, Mahadevan L. Growth, geometry, and mechanics of a blooming lily[J]. Proceedings of the National Academy of Sciences, 2011, 108(14): 5 516-5 521.
|
[2] |
Sharon E, Efrati E. The mechanics of non-Euclidean plates[J]. Soft Matter, 2010, 6(22): 5 693-5 704.
|
[3] |
Klein Y, Venkataramani S, Sharon E. Experimental study of shape transitions and energy scaling in thin non-Euclidean plates[J]. Physical Review Letters, 2011, 106(11): 118303.
|
[4] |
Efrati E, Sharon E, Kupferman R. Non-Euclidean plates and shells[EB/OL].[2015-01-01] http://math.huji.ac.il/~razk/Publications/PDF/ESK09b.pdf.
|
[5] |
Kim J, Hanna J A, Byun M, et al. Designing responsive buckled surfaces by halftone gel lithography[J]. Science, 2012, 335(6 073): 1 201-1 205.
|
[6] |
Byun M, Santangelo C D, Hayward R C. Swelling-driven rolling and anisotropic expansion of striped gel sheets[J]. Soft Matter, 2013,9:8 264-8 273.
|
[7] |
Kirchhoff G. ber das Gleichgewicht und die Bewegung einer elastischen Scheibe[J]. Journal für die reine und angewandte Mathematik, 1850, 40: 51-88.
|
[8] |
Truesdell C. The Mechanical Foundations of Elasticity and Fluid Dynamics[M]. New York: Gordon & Breach Science Pub, 1966.
|
[9] |
Oneill B. Elementary Differential Geometry[M]. New York: Academic Press, 1966.
|
[10] |
Spivak M. A Comprehensive Introduction to Differential Geometry, Volume Ⅰ[M]. Berkeley: Publish or Perish, 1979.
|
[11] |
Efrati E, Sharon E, Kupferman R. Buckling transition and boundary layer in non-Euclidean plates[J]. Physical Review E, 2009, 80(1): 016602.
|
[12] |
Li J, Liu M, Xu W, et al. Boundary-dominant flower blooming simulation[J]. Computer Animation and Virtual Worlds, 2015, 26: 433-443.
|
[1] |
Liang H Y, Mahadevan L. Growth, geometry, and mechanics of a blooming lily[J]. Proceedings of the National Academy of Sciences, 2011, 108(14): 5 516-5 521.
|
[2] |
Sharon E, Efrati E. The mechanics of non-Euclidean plates[J]. Soft Matter, 2010, 6(22): 5 693-5 704.
|
[3] |
Klein Y, Venkataramani S, Sharon E. Experimental study of shape transitions and energy scaling in thin non-Euclidean plates[J]. Physical Review Letters, 2011, 106(11): 118303.
|
[4] |
Efrati E, Sharon E, Kupferman R. Non-Euclidean plates and shells[EB/OL].[2015-01-01] http://math.huji.ac.il/~razk/Publications/PDF/ESK09b.pdf.
|
[5] |
Kim J, Hanna J A, Byun M, et al. Designing responsive buckled surfaces by halftone gel lithography[J]. Science, 2012, 335(6 073): 1 201-1 205.
|
[6] |
Byun M, Santangelo C D, Hayward R C. Swelling-driven rolling and anisotropic expansion of striped gel sheets[J]. Soft Matter, 2013,9:8 264-8 273.
|
[7] |
Kirchhoff G. ber das Gleichgewicht und die Bewegung einer elastischen Scheibe[J]. Journal für die reine und angewandte Mathematik, 1850, 40: 51-88.
|
[8] |
Truesdell C. The Mechanical Foundations of Elasticity and Fluid Dynamics[M]. New York: Gordon & Breach Science Pub, 1966.
|
[9] |
Oneill B. Elementary Differential Geometry[M]. New York: Academic Press, 1966.
|
[10] |
Spivak M. A Comprehensive Introduction to Differential Geometry, Volume Ⅰ[M]. Berkeley: Publish or Perish, 1979.
|
[11] |
Efrati E, Sharon E, Kupferman R. Buckling transition and boundary layer in non-Euclidean plates[J]. Physical Review E, 2009, 80(1): 016602.
|
[12] |
Li J, Liu M, Xu W, et al. Boundary-dominant flower blooming simulation[J]. Computer Animation and Virtual Worlds, 2015, 26: 433-443.
|