[1] |
Abdou M A, Soliman A A. New application of variational iteration method [J]. Phys D, 2005, 211: 1-8.
|
[2] |
Pava J A. Stability of solitary wave solution for equations of short and long dispersive waves [J]. Electr J Diff Equa, 2006,2006(72): 1-18.
|
[3] |
Ascher U M, McLachlan R I. On symplectic and multisymplectic schemes for the KdV equation[J]. J Sci Comput, 2005, 25: 83-104.
|
[4] |
Bai D M, Zhang L M. Numerical studies on a novel split-step quadratic B-spline finite element method for the coupled Schrdinger-KdV equations [J]. Commun Nonlinear Sci Numer Simulat, 2011, 16: 1 263-1 273.
|
[5] |
Benney D J, A general theory for interactions between short and long waves [J]. Stud Appl Math, 1977, 56: 81-94.
|
[6] |
Cai J X, Wang Y S, Liang H. Local energy-preserving and momentum-preserving algorithms for coupled nonlinear Schrdinger system[J]. J Comput Phys, 2013, 239: 30-50.
|
[7] |
Cai W J, Wang Y S, Song Y Z. Numerical dispersion analysis of a multi-symplectic scheme for the three dimensional Maxwells equations[J]. J Comput Phys, 2013, 234: 330-352.
|
[8] |
Bridges T J, Reich S. Numerical methods for Hamiltonian PDEs [J]. J Phys A: Math Gen, 2006, 39: 5 287-5 320.
|
[9] |
Chang Q S, Wong Y S, Lin C K. Numerical computations for long-wave short-wave interaction equations in semi-classical limit [J]. J Comput Phys, 2008, 227: 8 489-8 507.
|
[10] |
Erbay S, Nonlinear interaction between long and short waves in a generalized elastic solid [J]. Chaos Soliton Fract, 2000, 11: 1 789-1 798.
|
[11] |
Gong Y Z, Cai J X, Wang Y S. Some new structure-preserving algorithms for general multi-symplectic formulations of Hamiltonian PDEs[J]. J Comput Phys, 2014, 279: 80-102.
|
[12] |
Hong J L, Liu H Y, Sun G. The multisymplecticity of partitioned Runge-Kutta methods for Hamiltonian systems[J]. Math Comput, 2005, 75: 167-181.
|
[13] |
Hong J L, Li C. Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations[J]. J Comput Phys, 2006, 211: 448-472.
|
[14] |
Hong J L, Kong L H. Novel multi-symplectic integrators for nonlinear fourth-order Schrdinger equation with trapped term[J]. Commun Comput Phys, 2010, 7: 613-630.
|
[15] |
Hong J L, Sun Y J. Generating functions of multi-symplectic RK methods via DW Hamilton-Jacobi equations[J]. Numer Math, 2008, 110: 491-519.
|
[16] |
Kong L H, Zeng W P, Liu R X, et al. Multi-symplectic scheme of SRLW equation and conservation laws [J]. Journal of University of Science and Technology of China, 2005, 35: 770-776.
|
[17] |
Mclachlan R I, Wilkins M C. The multisymplectic diamond schems[J]. SIAM J Sci Comput, 2015, 37: A369-A390.
|
[18] |
Reich S. Multisymplecitc Runge-Kutta collocation methods for Hamilton wave equation [J]. J Comput Phys, 2000, 157: 473-499.
|
[19] |
Yoshinaga T. Kakutani T. Solitary and E-shock waves in a resonant system between long and short waves [J]. J Phys Soc Jpn, 1994, 63: 445-459.
|
[20] |
Zhang S Q. Li Z B. New explicit exact solutions to nonlinearly coupled Schrdinger-KdV equations [J]. Acta Phys Sinica, 2002, 51: 2 197-2 201.
|
[21] |
Zhao P F, Qin M Z. Multisymplectic geometry and multisymplectic Preissmann scheme for the KdV equation [J]. J Phys A: Math Gen, 2000, 33: 3 613-3 626.
|
[22] |
Zhu P F, Kong L H, Wang L. The conservation laws of Schrdinger-KdV equations [J]. J Jiangxi Normal Univ, 2012, 36: 495-498.
|
[1] |
Abdou M A, Soliman A A. New application of variational iteration method [J]. Phys D, 2005, 211: 1-8.
|
[2] |
Pava J A. Stability of solitary wave solution for equations of short and long dispersive waves [J]. Electr J Diff Equa, 2006,2006(72): 1-18.
|
[3] |
Ascher U M, McLachlan R I. On symplectic and multisymplectic schemes for the KdV equation[J]. J Sci Comput, 2005, 25: 83-104.
|
[4] |
Bai D M, Zhang L M. Numerical studies on a novel split-step quadratic B-spline finite element method for the coupled Schrdinger-KdV equations [J]. Commun Nonlinear Sci Numer Simulat, 2011, 16: 1 263-1 273.
|
[5] |
Benney D J, A general theory for interactions between short and long waves [J]. Stud Appl Math, 1977, 56: 81-94.
|
[6] |
Cai J X, Wang Y S, Liang H. Local energy-preserving and momentum-preserving algorithms for coupled nonlinear Schrdinger system[J]. J Comput Phys, 2013, 239: 30-50.
|
[7] |
Cai W J, Wang Y S, Song Y Z. Numerical dispersion analysis of a multi-symplectic scheme for the three dimensional Maxwells equations[J]. J Comput Phys, 2013, 234: 330-352.
|
[8] |
Bridges T J, Reich S. Numerical methods for Hamiltonian PDEs [J]. J Phys A: Math Gen, 2006, 39: 5 287-5 320.
|
[9] |
Chang Q S, Wong Y S, Lin C K. Numerical computations for long-wave short-wave interaction equations in semi-classical limit [J]. J Comput Phys, 2008, 227: 8 489-8 507.
|
[10] |
Erbay S, Nonlinear interaction between long and short waves in a generalized elastic solid [J]. Chaos Soliton Fract, 2000, 11: 1 789-1 798.
|
[11] |
Gong Y Z, Cai J X, Wang Y S. Some new structure-preserving algorithms for general multi-symplectic formulations of Hamiltonian PDEs[J]. J Comput Phys, 2014, 279: 80-102.
|
[12] |
Hong J L, Liu H Y, Sun G. The multisymplecticity of partitioned Runge-Kutta methods for Hamiltonian systems[J]. Math Comput, 2005, 75: 167-181.
|
[13] |
Hong J L, Li C. Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations[J]. J Comput Phys, 2006, 211: 448-472.
|
[14] |
Hong J L, Kong L H. Novel multi-symplectic integrators for nonlinear fourth-order Schrdinger equation with trapped term[J]. Commun Comput Phys, 2010, 7: 613-630.
|
[15] |
Hong J L, Sun Y J. Generating functions of multi-symplectic RK methods via DW Hamilton-Jacobi equations[J]. Numer Math, 2008, 110: 491-519.
|
[16] |
Kong L H, Zeng W P, Liu R X, et al. Multi-symplectic scheme of SRLW equation and conservation laws [J]. Journal of University of Science and Technology of China, 2005, 35: 770-776.
|
[17] |
Mclachlan R I, Wilkins M C. The multisymplectic diamond schems[J]. SIAM J Sci Comput, 2015, 37: A369-A390.
|
[18] |
Reich S. Multisymplecitc Runge-Kutta collocation methods for Hamilton wave equation [J]. J Comput Phys, 2000, 157: 473-499.
|
[19] |
Yoshinaga T. Kakutani T. Solitary and E-shock waves in a resonant system between long and short waves [J]. J Phys Soc Jpn, 1994, 63: 445-459.
|
[20] |
Zhang S Q. Li Z B. New explicit exact solutions to nonlinearly coupled Schrdinger-KdV equations [J]. Acta Phys Sinica, 2002, 51: 2 197-2 201.
|
[21] |
Zhao P F, Qin M Z. Multisymplectic geometry and multisymplectic Preissmann scheme for the KdV equation [J]. J Phys A: Math Gen, 2000, 33: 3 613-3 626.
|
[22] |
Zhu P F, Kong L H, Wang L. The conservation laws of Schrdinger-KdV equations [J]. J Jiangxi Normal Univ, 2012, 36: 495-498.
|