[1] |
Cook R D. Regression Graphics: Ideas for Studying Regressions Through Graphics[M]. New York: Wiley, 1998: 215.
|
[2] |
Ma Y, Zhu L. A review on dimension reduction[J]. International Statistical Review, 2013, 81(1):134-150.
|
[3] |
Li K C, Wang J L, Chen C H. Dimension reduction for censored regression data[J]. The Annals of Statistics, 1999, 27(1): 1-23.
|
[4] |
Li K C. Sliced inverse regression for dimension reduction[J]. Journal of the American Statistical Association, 1991, 86(414):316-327.
|
[5] |
Li L, Li H. Dimension reduction methods for microarrays with application to censored survival data[J]. Bioinformatics, 2004, 20(18): 3 406-3 412.
|
[6] |
Shevlyakova M, Morgenthaler S. Sliced inverse regression for survival data[J]. Statistical Papers, 2014, 55(1):209-220.
|
[7] |
Wen X M. On sufficient dimension reduction for proportional censorship model with covariates[J]. Computational Statistics & Data Analysis, 2010, 54(8): 1 975-1 982.
|
[8] |
Xia Y, Zhang D,Xu J. Dimension reduction and semiparametric estimation of survival models[J]. Journal of the American Statistical Association, 2010, 105(489): 278-290.
|
[9] |
Lu W, Li L. Sufficient dimension reduction for censored regressions[J]. Biometrics, 2011, 67(2):513-523.
|
[10] |
Bender R,Augustin T, Blettner M. Generating survival times to simulate Cox proportional hazards models[J]. Statistics in Medicine, 2005, 24(11):1 713-1 723.
|
[11] |
Wu H M. Kernel sliced inverse regression with applications to classification[J]. Journal of Computational and Graphical Statistics, 2008, 17(3): 590-610.
|
[12] |
Aronszajn N. Theory of reproducing kernels[J]. Transactions of the American Mathematical Society, 1950, 68(3): 337-404.
|
[13] |
Schlkopf B, Smola A J. Learning With Kernels: Support Vector Machines, Regularization, Optimization,and Beyond[M]. Cambridge, MA: MIT Press, 2001.
|
[14] |
Zhong W, Zeng P, Ma P, et al. RSIR: Regularized sliced inverse regression for motif discovery[J]. Bioinformatics, 2005, 21(22):4 169-4 175.
|
[15] |
Ferr W L, Villa N. Multilayer perceptron with functional inputs: An inverse regression approach[J]. Scandinavian Journal of Statistics, 2006, 33(4): 807-823.
|
[16] |
Li L, Yin X. Sliced inverse regression with regularizations[J]. Biometrics, 2008, 64(1):124-131.
|
[17] |
Cox D R. Regression models and life-tables[C]// Breakthroughs in Statistics. New York: Springer, 1992: 527-541.
|
[1] |
Cook R D. Regression Graphics: Ideas for Studying Regressions Through Graphics[M]. New York: Wiley, 1998: 215.
|
[2] |
Ma Y, Zhu L. A review on dimension reduction[J]. International Statistical Review, 2013, 81(1):134-150.
|
[3] |
Li K C, Wang J L, Chen C H. Dimension reduction for censored regression data[J]. The Annals of Statistics, 1999, 27(1): 1-23.
|
[4] |
Li K C. Sliced inverse regression for dimension reduction[J]. Journal of the American Statistical Association, 1991, 86(414):316-327.
|
[5] |
Li L, Li H. Dimension reduction methods for microarrays with application to censored survival data[J]. Bioinformatics, 2004, 20(18): 3 406-3 412.
|
[6] |
Shevlyakova M, Morgenthaler S. Sliced inverse regression for survival data[J]. Statistical Papers, 2014, 55(1):209-220.
|
[7] |
Wen X M. On sufficient dimension reduction for proportional censorship model with covariates[J]. Computational Statistics & Data Analysis, 2010, 54(8): 1 975-1 982.
|
[8] |
Xia Y, Zhang D,Xu J. Dimension reduction and semiparametric estimation of survival models[J]. Journal of the American Statistical Association, 2010, 105(489): 278-290.
|
[9] |
Lu W, Li L. Sufficient dimension reduction for censored regressions[J]. Biometrics, 2011, 67(2):513-523.
|
[10] |
Bender R,Augustin T, Blettner M. Generating survival times to simulate Cox proportional hazards models[J]. Statistics in Medicine, 2005, 24(11):1 713-1 723.
|
[11] |
Wu H M. Kernel sliced inverse regression with applications to classification[J]. Journal of Computational and Graphical Statistics, 2008, 17(3): 590-610.
|
[12] |
Aronszajn N. Theory of reproducing kernels[J]. Transactions of the American Mathematical Society, 1950, 68(3): 337-404.
|
[13] |
Schlkopf B, Smola A J. Learning With Kernels: Support Vector Machines, Regularization, Optimization,and Beyond[M]. Cambridge, MA: MIT Press, 2001.
|
[14] |
Zhong W, Zeng P, Ma P, et al. RSIR: Regularized sliced inverse regression for motif discovery[J]. Bioinformatics, 2005, 21(22):4 169-4 175.
|
[15] |
Ferr W L, Villa N. Multilayer perceptron with functional inputs: An inverse regression approach[J]. Scandinavian Journal of Statistics, 2006, 33(4): 807-823.
|
[16] |
Li L, Yin X. Sliced inverse regression with regularizations[J]. Biometrics, 2008, 64(1):124-131.
|
[17] |
Cox D R. Regression models and life-tables[C]// Breakthroughs in Statistics. New York: Springer, 1992: 527-541.
|