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The proposed CBAMs-BiLSTM model has robustness and superiority in prediction performance.

Public summary
m The impact of the position and quantity of CBAM on the prediction performance of the stock index is analyzed.

m A novel stock index forecasting model, CBAMs-BiLSTM, with superiority and robustness in prediction performance
and simulated returns, is proposed.

m The MCS test is introduced to measure the prediction performance of different models.
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Abstract: The convolutional block attention module (CBAM) has demonstrated its superiority in various prediction prob-
lems, as it effectively enhances the prediction accuracy of deep learning models. However, there has been limited research
testing the effectiveness of CBAM in predicting stock indexes. To address this gap and improve the prediction accuracy of
stock indexes, we propose a novel model called CBAMs-BiLSTM, which combines multiple CBAM modules with a bid-
irectional long short-term memory network (BiLSTM). In this study, we employ the standard metric evaluation method
(SME) and the model confidence set test (MCS) to comprehensively evaluate the superiority and robustness of our models.
We utilize two representative Chinese stock index data sets, namely, the SSE Composite Index and the SZSE Composite
Index, as our experimental data. The numerical results demonstrate that CBAMs-BiLSTM outperforms BiLSTM alone,
achieving average reductions of 13.06%, 13.39%, and 12.48% in MAE, RMSE, and MAPE, respectively. These findings
confirm that CBAM can effectively enhance the prediction accuracy of BILSTM. Furthermore, we compare our proposed
model with other popular models and examine the impact of changing data sets, prediction methods, and the size of the
training set. The results consistently demonstrate the superiority and robustness of our proposed model in terms of predic-

tion accuracy and investment returns.
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1 Introduction

Stocks play a pivotal role in financial markets, making stock
indexes of great interest to regulators and investors alike. At
the macro level, stock indexes are influential factors in the
stability of the financial environment and economic develop-
ment, as well as serving as early warning indicators for the
economic climate!’. Thus, stock indexes hold significant im-
portance for regulators. On a micro level, the fluctuations of
stock indexes directly impact investment risks and returns.
Accurate prediction of stock indexes not only aids regulators
in overseeing stock markets but also assists investors in mak-
ing informed investment decisions. However, the prediction
of stock indexes is a challenging task due to the complex
factors influencing them, such as price levels, monetary
policies, and market interest rates™ .

Traditionally, researchers in stock index prediction have
favored statistical methods, such as regression analysis', gen-
eralized autoregressive  conditional heteroscedasticity
(GARCH)F!, autoregressive integrated moving average
(ARIMA)“", and smooth transition autoregressive model
(STAR)®. However, these methods rely on assumptions of
time series stationarity and linearity among normally distrib-
uted variables, which are not satisfied in real stock markets!.
Consequently, these models exhibit poor prediction accuracy
when dealing with nonlinear and nonstationary stock data'.
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Machine learning models, particularly neural networks,
have shown better performance in extracting nonlinearity and
nonstationarity from financial time series compared to clas-
sical statistical models"". Neural networks leverage nonlinear
activation functions to capture complex information in the
datal> ™!, For instance, Yu et al.l'’ utilized a local linear em-
bedding dimensionality reduction algorithm (LLE) to reduce
the dimensionality of factors influencing stock indexes. They
then employed a back-propagation (BP) neural network to op-
timize stock index prediction. Recurrent neural networks
(RNNs) in deep learning can effectively extract autocorrela-
tion information due to their recurrent structure''”. Long short-
term memory (LSTM), a type of RNN, not only extracts auto-
correlation information but also addresses the vanishing or
exploding gradient problem through gating functions!”. Bid-
irectional LSTM (BiLSTM) differs from LSTM by consider-
ing both historical and future information, enhancing se-
quence analysis'®. Several studies have confirmed the pre-
dictive superiority of BILSTM over LSTM in stock data’* "

The attention mechanism (AM) is a network module that
dynamically learns the weights of each feature, while the con-
volutional block attention module (CBAM) represents an en-
hanced version of the attention mechanism. CBAM intro-
duces an attention mechanism for spaces and channels, en-
abling models to focus on essential features and disregard ir-
relevant ones, thereby improving the prediction accuracy of
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network models”. Additionally, CBAM effectively reduces
the interference caused by redundant features™. Cheng et al.™"!
integrated CBAM into a temporal convolutional network
(TCN) to create the hybrid model TCN-CBAM for predicting
chaotic time series. The experimental results demonstrate that
incorporating CBAM significantly enhances the prediction
accuracy of the TCN. Li et al.”" proposed a fault diagnosis
model for rolling bearings that combines a dual-stage
attention-based recurrent neural network (DA-RNN), CBAM,
and convolutional neural network (CNN). By utilizing two vi-
bration data sets from rolling bearings, they confirmed that
the proposed DARNN-CBAM-CNN method improves the
fault diagnosis accuracy by 1.90% compared to a DARNN-
CNN method without CBAM. In the domain of gold price
prediction, Liang et al."* highlighted that CBAM, unlike the
attention mechanism, allocated weights across the two inde-
pendent dimensions of channel and space, leading to better
prediction accuracy in theory. Moreover, CBAM has proven
effective in improving prediction accuracy in other areas,
such as global horizontal irradiance (GHI) prediction™ and
PM2.5 concentration prediction””. However, despite the ex-
tensive research on CBAM’s effectiveness in other fields, it
has been relatively underutilized in stock index prediction.
Furthermore, existing studies lack a detailed analysis of
whether the position and quantity of CBAM in models affect
prediction accuracy.

In summary, this paper aims to leverage the proven superi-
ority of CBAM in other prediction problems and the estab-
lished effectiveness of BILSTM in stock data. To achieve
this, the paper proposes a novel model called CBAM-
BiLSTM, which combines CBAM with BiLSTM to further
enhance the prediction accuracy of stock indexes. The experi-
mental data consist of two representative Chinese stock index
data sets, namely, the SSE Composite Index and the SZSE
Composite Index. The prediction accuracy of the models is
assessed using standard metric evaluation methods (SME)
and the model confidence set test (MCS). For comparison,
classical models in time series prediction problems, such as
BiLSTM, CNN, LSTM, CNN-LSTM, and CNN-BiLSTM,
are chosen as benchmark models.

The initial experiments focus on conducting a detailed ana-
lysis of how the position and quantity of CBAM affect the
prediction accuracy of BiLSTM. The numerical results
demonstrate that the proposed model exhibits significant
improvements compared to BILSTM alone, with an average

reduction of 13.06%, 13.39%, and 12.48% in MAE, RMSE,
and MAPE, respectively, and an average improvement of
1.98% in R*. These findings confirm that the combination of
CBAM and BiLSTM can further enhance the prediction ac-
curacy of BILSTM.

Furthermore, the paper validates the superiority and robust-
ness of the proposed CBAM-BiLSTM model by comparing it
with other popular models and evaluating its performance
under different data sets, prediction methods, and training set
sizes. This analysis encompasses both prediction accuracy
and investment returns.

The innovations and contributions of this paper can be
summarized as follows. First, the paper introduces a rational
strategy that combines CBAM and BiLSTM to propose the
advanced CBAM-BIiLSTM model, thereby further improving
the accuracy of stock index prediction. Second, the paper con-
ducts a detailed analysis to investigate the impact of the posi-
tion and quantity of CBAM on the prediction accuracy of
BiLSTM.

The rest of the paper is organized as follows. Section 2
presents the methodology, which provides a detailed explana-
tion of the structure and principles of the proposed CBAM-
BiLSTM model. Section 3 comprises an analysis of the ex-
periments, including information about the experimental data,
experimental design, and result analysis. Finally, Section 4
concludes the article by summarizing the key findings, dis-
cussing some shortcomings, and outlining future research
plans.

2 Methodology

2.1 Structure and principle of CBAM-BiLSTM

The structure of CBAM-BIiLSTM is shown in Fig. 1. Mul-
tiple CBAMs and a BiLSTM are mixed using a linear stack-
ing approach, with multiple CBAMs placed in front of
BiLSTM used to achieve a sufficiently rational distribution of
attention weights to input features. In CBAM-BiLSTM, the
number of CBAMs is a hyperparameter that needs to be set
artificially. Similar to other hyperparameters in a deep learn-
ing model, the number of CBAMs can be chosen as an appro-
priate value by comparing the prediction accuracy of models
on the validation set. CBAM#z-BiLSTM is CBAM-BILSTM
containing n CBAM. For example, CBAM3-BiLSTM means
that the CBAM-BiLSTM model contains three CBAM
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Fig. 1. Structure of CBAM-BiLSTM.
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modules. The structures of CBAM and BiLSTM are de- e =foc. +iob, (5)
scribed in detail below.
2.2 Structure and principle of BILSTM h, = tanh(c,) 0 0,. 6)

LSTM overcomes the problem of gradient disappearance or
explosion that RNNs have by introducing long-term memory
states and multiple gating functions. These gating functions
selectively forget or remember new information in the long-
term memory state, which in turn allows information useful
for subsequent moments of computation to be passed and use-
less information to be discarded””*". BILSTM consists of two
independent LSTM layers that have the same input but trans-
fer information in opposite directions. Therefore, compared to
LSTM, BiLSTM can improve the prediction accuracy by
fully considering both historical and future information. The
cell structure of LSTM and the network structure of BILSTM
are shown in Fig. 2.

LSTM uses three gating functions to control the value of
the long-term memory state ¢,***”. The forgetting gating
function f, determines the amount of information retained
from the previous time-unit state c,_, to the current time-unit
state ¢,. The input gating function i, controls the amount of
information preserved in the current input x, to the long-term
memory state ¢,. The output gating function o, controls the
amount of information input to the current output &, from the
long-term memory state ¢,. LSTM has three inputs at mo-
ment ¢, including current time input value x,, last time output
value h, ,, and last long-term memory state ¢, ,. LSTM has
two outputs at moment #: the current time output value 4, and
the current long-term memory state c,. Egs. (1)—(6) represent
the update process of LSTM at moment ¢.

Here, w,b are the weight matrix and the deviation vector of
the corresponding gating functions, respectively. ¢,
denotes the long-term memory state of the current input. “o”
denotes the scalar product between vectors. “-” denotes matrix
multiplication.

In the network structure of BiLSTM, the same input data
are fed to the forward LSTM layer and backward LSTM
layer, and the hidden state 4/ in the forward LSTM layer and
the hidden state 4’ inthe backward LSTM layer are com-
puted. In the forward LSTM layer, forward computation is
performed from time 1 to time ¢z In the backward LSTM
layer, backward computation is performed from time 7 to time
1. The outputs of the current prehidden state and posthidden
state are obtained and saved at each time unit. Then, two hid-
den states are connected to calculate the output value of
BiLSTM. Egs. (7)—(9) represent the calculation process of
BiLSTM.

h' = LSTM(x,, 1), 7
h = LSTM(x,, A" ), ®)
0, =w; I/ +w, W +b. ©)

Here, LSTM(:) denotes the mapping of the already defined
LSTM network layers. w; and w, denote the weight matrices
of the forward LSTM layer and backward LSTM layer, re-
spectively. b denotes the deviation vector of the output layer.

1:*. id ()'hr771+b(17 1
0, = sigmoid(w, - [h-1, x] ) M 2.3 Structure and principle of CBAM
. . CBAM can implement an attention mechanism on both space
Jr = sigmoid(w - [, x]1+by), & and channel, which in turn can focus on key features and ig-
nore useless features. After features are brought up by the
i, = sigmoid(w; - [h,_;, x,]1+ b)), 3) convolutional neural network implementation, CBAM com-
putes the weight mapping of feature mapping from both chan-
N 1 and spatial dimensions and then multiplies the weights
, = tanh(w, - [h,_,, x,] +b,), 4 " p P &
¢ = tanh(w. - (k1. %] +.) @) with input features for adaptive learning. This lightweight
- h,
A \ G

I e e 1
|
|

BiLSTM network structure |

LD L IR OTR ST I
Fig. 2. Structure of LSTM and BiLSTM.
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Fig. 3. Structure of CBAM.

general-purpose module can be integrated into a variety of
convolutional neural networks for end-to-end training®".
Fig. 3 illustrates the network structure of CBAM.

From Fig. 3, the channel attention module (CAM) outputs a
one-dimensional channel attention vector M., which is used
to assign weights to each channel, indicating the importance
of each channel. The spatial attention module outputs a three-
dimensional spatial attention tensor My, which indicates
which features at which locations in the three-dimensional
space are key features and which are secondary features. Egs.
(10) and (11) represent the whole calculation process.

F =MC(F)®F7 (10)

F' =M;(F)®F. (11)

Here, M.(F) represents the output of the channel attention
module when the input is F. M(F") represents the output of
the spatial attention module when the input is F'. ® repres-
ents element multiplication. Pooling operations in CBAM in-
clude two types: “MaxPool” and “AvgPool”. Pooling can ex-
tract high-level features, and different pooling methods mean
that the extracted high-level features are richer. From Fig. 3,
we can see that Eq. (12) represents the computation process
of the channel attention module, and that Eq. (13) represents
the computation process of the spatial attention module.

M (F) = sigmoid(MLP(AvgPool(F)) + MLP(MaxPool(F))),
12)

M (F) = sigmoid(Conv([AvgPool(F),MaxPool(F)])). (13)

Here, AvgPool(-) is the average pooling of input features.
MaxPool(-) maximizes the pooling of input features. MLP(-)
is the output of a multilayer perceptron. Conv(-) is the output
of a convolutional layer.

2.4 Evaluation of model performance

The standard metric evaluation method (SME) and model
confidence set test (MCS) are used to comprehensively evalu-
ate the performance of the models.

2.4.1 Standard metric evaluation method

Loss error is the difference between the observed and pre-
dicted values and is used to evaluate the prediction accuracy
of models. The mean absolute error (MAE), root mean square
error (RMSE), mean absolute percentage error (MAPE), and
coefficient of fit (R?) are chosen to comprehensively evaluate
the prediction accuracy of the models. Smaller MAE, RMSE,
and MAPE values indicate a higher prediction accuracy of the
models; larger R* values indicate a higher prediction accuracy
of the models. The true value is y = (y,,y,,"--,¥,), and the

predicted value is $ = ($,,9,,---,9,). The equations below are
expressions of metrics.
1
MAE= =Y [y;= . 14
" Z i = 5l (14)
1
RMSE = _ |- AR 15
NG 2,019 (15)
1 ly: =3l
MAPE = —_ 16
Z vl +107" (10

Z(y -5
Z(y, '

1 . . .
Here, y = — Zyi. RMSE is the arithmetic square root of the
n <

amn

mean squared error (MSE), which is more intuitive in order of
magnitude than MSE; hence, RMSE was chosen for the
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experiments. RMSE and MAE reflect absolute errors, so
MAPE and R’ are introduced to measure the relative errors of
models. A small perturbation term, 107, is added to MAPE to
ensure that the denominator is not 0. This has no impact on
the evaluation of models by this metric. For R?, the closer the
value is to 1, the better the variance of the target feature is ex-
plained by the models, which further indicates that the mod-
els are more accurate in predicting the target feature.

The Sharpe ratio is an indicator that combines the returns
and risk of an investment. Experiments use the Sharpe ratio to
evaluate the superiority of models in terms of investment re-
turns. The expression of the Sharpe ratio is given as

ER,)—R;
Y

SharpeRatio = (18)

»
Here, R, is the return sequence. E(R,) is the mean of R,. R,
is the risk-free rate. o, is the standard deviation of R,. To fa-
cilitate calculation, let R, = 0.

2.4.2 Model confidence set (MCS) test

The model confidence set (MCS) test proposed by Hansen et
al.t*! is used to test whether there is a significant difference
between the prediction accuracy of different models. More
conveniently, we can calculate MCS p values of models to
quantify the model’s prediction accuracy and to visually com-
pare the strengths and weaknesses of different models’ pre-
diction accuracy. This method is widely used to test differ-
ences in prediction performance between different predictive
models®™ .

We assume that there are m predictive models and s
samples to be predicted. M = {m,,m,,---,m,} is a set of all
predictive models. For each predictive model, there are s pre-
dictions . In MCS, loss functions need to be selected for cal-
culating the loss generated by each sample. Loss = Loss(y;, ;)
is a loss function. The loss functions chosen for the experi-
ments are as follows. L,; is the loss value calculated for the
ith  model with the jth sample according to Loss.
d..,;, =L.;,—L,; is the loss difference between the uth model
and vth model computed on the jth sample according to Loss.

1
Lossl : MSE= = » (v, =3,
X

1
Loss2 : MAE = — = Vil
nZIy il

a2
)

1 hJ
Loss3 : HMSE = — 1-=
0SS ”Z( y,-)

1 .
Loss4 : HMAE = —Z|1—&|.
n&i oy,

The MCS test is designed to test the significance of differ-
ences in the prediction accuracy of models in a set and to
eliminate the model with poor prediction accuracy. Therefore,

in each test, the null hypothesis is that all models have the
same prediction accuracy. That is.

H,y:Ed,,;)=0, uyve NCc M.

0204-5

Here, E(d,,,,;) is the mean of d,,, ;. When the null hypothesis
is rejected, the model with poor prediction accuracy in N is
removed. The MCS steps are as follows.

Step1: Let N=M.

Step 2: At significance level «, the null hypothesis is
tested to see if it holds.

Step 3: If the null hypothesis is accepted, then let
N;_, = M; otherwise, remove the model with poor prediction
accuracy from N until the null hypothesis is not rejected.

After implementing the steps, N;_, will contain the models
that are optimal at the confidence level of 1 —a. To test the
null hypothesis, the following two statistics are experiment-
ally selected.

d..
T, = max _ Mol ) (19)
u,veN \’/aj‘(d_(’w))
d..
Tyax = Max ——t (20)
v,

Here, |N| is the count of elements in N. d,,, = lZdW)_j.
_ 1 —— *

dy .= —Zd(,,_‘,). The true distributions of statistics T (R-

IN| &

statistic) and Ty.x (MAX-statistic) are very complex, so the
distributions of the R-statistic and MAX-statistic are simu-
lated in the MCS test using the bootstrap method. See Ref.
[33] for details of the bootstrap steps.

A major advantage of MCS is the ability to quantify the
prediction accuracy of the model by calculating the MCS p
values of models. The MCS p values of the models are not the
same as the p values of the hypothesis testing. The MCS p
values of the models are not the result of a probability calcu-
lation and do not have probabilistic significance. The process
of calculating the MCS p values of models is as follows"™.
Denote my, for the model with prediction accuracy ranked k
among all models. The ranking order of the prediction accur-
acy of all models is m, <my <---<m,,. Let O, =
(M Mgsry, -+ My} Thus, @, =M and Q, ={m,,}. Appar-
ently, if H,,, is rejected, m,, will be removed from Q,. Let
p: be the p value of H,,, based on the above statistics. There-
fore, define the MCS p values of m, to be max.,p,. Be-
cause Q, only contains the model with the highest prediction
accuracy, we cannot test H,,, . Thus, we define the MCS p
values of m,,, to be 1.00.

From the above analysis, it can be seen that the MCS p
value of the model with the highest prediction accuracy is al-
ways 1.00 and that the larger MCS p values of the model
indicate the higher accuracy of the model.

3 Analysis of experiments

3.1 Data introduction

Two representative Chinese stock index data sets, the
SSE Composite Index (index code: 000001; the abbreviation
for it is SHCI in this article) and the SZSE Composite Index
(index code: 399106; the abbreviation for it is SZCI in this
article), have been carefully selected as the experimental data
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for this study. The SHCI data set consists of all stocks listed
on the Shanghai Stock Exchange, including A shares and B
shares. It effectively captures the price movements of stocks
listed on the Shanghai Stock Exchange. The SZCI data set
represents a weighted composite stock index compiled by the
Shenzhen Stock Exchange. It is calculated based on all stocks
listed on the Shenzhen Stock Exchange, with each stock’s is-
sue weight taken into account. The time period for the two
data sets spans from 14 June, 2012 to 31 August, 2022. Daily
data for the study are obtained from the Wind database.

In this study, the closing price of the stock indexes is
chosen as the experimental data. The data are divided into
three parts: training data, validation data, and test data, as il-
lustrated in Fig. 4. The training data are utilized to calculate
the weights and biases of the models. The validation data are
employed to determine the optimal number of CBAMs if ne-
cessary. Finally, the trained models are evaluated on the test
set. Notably, all models have been trained and converged, en-
suring that there is no overfitting issue.

Table 1 summarizes the statistics of the two data sets.
Based on the results of the Jarque-Bera (JB) test, the null hy-
pothesis of a normal distribution is rejected at the 5% signific-
ance level for both the SHCI and SZCI. Additionally, the res-
ults of the Ljung-Box test suggest that the null hypothesis of
no autocorrelation up to the 20th order is rejected at the 5%
significance level for both data sets, indicating the presence of
long-term serial autocorrelation in SHCI and SZCI.

3.2 Preprocessing of data

Max-min normalization can speed up the training process of
models and facilitate the convergence of models'. Therefore,
the data are first normalized. The normalization formula is as
follows.

y: —min{y,}

Y maxiy) —minfy © &P

2

Here, « denotes assignment. y; is the closing price at mo-
ment 7. The prediction method in the experiments is to use 60
days as a time step to predict the next day and then keep slid-
ing forward. The form of the data is shown in Fig. 5. The ex-
pression is shown in Eq. (22).

(22)

Vi = f(yn sVttt ,y150)~

3.3 Related hyperparameter settings

The experiments were conducted using Python 3.8.1 as the
programming language and PyCharm 2020.1.2 (Community
Edition) as the compiler. The Python libraries used include
numpy 1.23.3, pandas 1.4.4, matplotlib 3.6.1, TensorFlow
2.10.0, keras 2.10.0, sklearn 1.1.3, and arch 5.3.1. To ensure
reproducibility of the results, random seeds were set to 12,
1234, and 2345. To focus on the performance of the models
rather than the influence of hyperparameters on the predic-
tion results, consistent hyperparameter values were used for
different models, as indicated in Table 2. The default values
were retained for the remaining hyperparameters.

3.4 The impact of CBAM on BiLSTM

Despite the demonstrated superiority of CBAM in various do-
mains, there is a lack of detailed analysis in existing studies
regarding the influence of CBAM’s position and quantity on
prediction accuracy. To address this gap, the experiments are
divided into two parts. The first part examines the impact of
CBAM position on the prediction accuracy of BiLSTM, while
the second part investigates the effect of CBAM quantity on
the prediction accuracy of BILSTM. This approach allows for
a comprehensive understanding of how the position and
amount of CBAM in models can affect prediction accuracy.

3.4.1 The impact of the position of CBAM on BiLSTM

First, the impact of CBAM position on prediction accuracy is

SHCI SZC1
5900 , A
4900 =000
3900 |
M 2000
2900
1900 > 1000 >
> O W LR C IR S ) \ X O W LR R I - AT A
S S W T E TS S S @ 20 T T G
PRI SIS & NGNS N RS MO\ SRR
M N I R N A I P O R
training data validation data = test data
Fig. 4. Two stock indices.
Table 1. Summary statistics of data sets.

Data set Count Mean Min Max Std JB_pvalues LB(20) pvalues
SHCI 2000 3165.98 2023.74 5166.35 425.45 0.0000 0.0000
SZCl 2000 1925.27 1148.29 3140.66 347.39 0.0273 0.0000
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Fig. 5. Data formats.

analyzed. Two modeling schemes are considered: CBAM in
front of BiLSTM (CBAM_f BiLSTM) and CBAM behind
BiLSTM (CBAM b BiLSTM). Fig. 6 illustrates these two
modeling schemes, and Table 3 presents the results on the test
sets for both schemes. Furthermore, the robustness analysis of
the two modeling schemes on the test sets is shown in Table 4.

The values in Table 4 are explained as follows. The
“model 1 / model 2” column represents the percentage optim-
ization of model 1 compared to model 2. The “Mean” column
displays the mean optimization percentage for the two model-
ing schemes across different data sets, while the “Std” column
represents the standard deviation of the optimization
percentage for the two schemes across different data sets.

To illustrate the calculation process, let us consider the ex-

Table 2. Hyperparameters of models.

ample of the MAE optimization percentage in the mean
column (—1.65%). For the SHCI data set, CBAM f_
BiLSTM/BILSTM = (34.0270 — 35.3833)/34.0270 x 100% =
—3.99%, where 34.0270 and 35.3833 are values from Table 3.
Similarly, for the SZCI data set, CBAM_f BIiLSTM/
BiLSTM = (30.8811 — 30.6652)/30.8811x 100% = 0.70%,
where 30.8811 and 30.6652 are values from Table 3. Thus,
for MAE, the mean of CBAM_f BiLSTM/BiLSTM is calcu-
lated as (—3.99% + 0.70%)/2 = —1.65%. The standard devi-
ation (Std) of CBAM_f BILSTM/BILSTM is computed as
follows:

Std = Sqrt{Square[-3.99% — (—1.65%)]+
Square[0.70% — (—1.65%)]} = 2.3450.

Here, Sqrt{ } represents the arithmetic square root function,
and Square[ | represents the square function.

The optimization percentages for RMSE and MAPE are
calculated in the same manner as MAE. However, the optim-
ization percentage for R® is calculated in the opposite way to
MAE. Let us consider the example of the R* optimization per-
centage in the mean column (0.11%). For the SHCI data set,
CBAM_f BILSTM/BILSTM = (0.9404 — 0.9448)/0.9448 x
100% = —0.47%, where 0.9404 and 0.9448 are values from
Table 3. Similarly, for the SZCI data set, CBAM f
BiLSTM/BIiLSTM=(0.9466—0.9400)/0.9400x 100% =0.70%,
where 0.9466 and 0.9400 are values from Table 3. Therefore,
for R? the mean of CBAM_f BIiLSTM/BILSTM is calcu-
lated as (—0.47%+0.70%)/2=0.11%. The standard deviation
is computed as Std = Sqrt{Square[-0.47% — 0.11%] +
Square[0.70% — 0.11%]} = 0.5850.

Model Filters Kernel_size Pool_size Units Loss Optimizer Batch_size Epochs
CNN 64 3 2 - MSE Adam 128 200
LSTM - - - 64 MSE Adam 128 200
BIiLSTM - - - 64 MSE Adam 128 200
CNN-LSTM 64 3 2 64 MSE Adam 128 200
CNN-BiLSTM 64 3 2 64 MSE Adam 128 200
CBAMs-BiLSTM - - - 64 MSE Adam 128 200

BiLSTM

BiLSTM

n ‘
?-|- L dCBAM o

( CBAM_b_BiLSTM |

Fig. 6. Two modeling schemes.
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Table 3. SME of two modeling schemes on test sets.
SHCI SZCI
Model
MAE RMSE MAPE R MAE RMSE MAPE R
BIiLSTM 34.0270 43.0277 0.01038 0.9448 30.8811 38.9196 0.01449 0.9400
CBAM f BiLSTM 35.3833 44.0236 0.01077 0.9404 30.6652 37.4941 0.01448 0.9466
CBAM b BiLSTM 38.9827 48.7188 0.01190 0.9279 30.1073 37.2790 0.01430 0.9484

The above results are calculated based on the data without normalization. Five decimal places are retained because the MAPE values are too small.

Table 4. Robustness analysis of two modeling schemes on test sets.

Mean Std
Model
MAE RMSE MAPE R MAE RMSE MAPE R
CBAM_f BiLSTM/BiLSTM -1.65% 0.68% —1.85% 0.11% 2.3450 2.9850 1.9150 0.5850
CBAM_b BiLSTM/BIiLSTM —6.03% —4.51% —6.67% -0.45% 8.5350 8.7250 7.9750 1.8457

The above results are calculated based on the data without normalization.

Table 4 clearly shows that CBAM f BILSTM outper-
forms CBAM b BiLSTM in all metrics. Additionally,
CBAM _f BIiLSTM exhibits smaller standard deviations for
each metric. These findings indicate that CBAM_f BiLSTM
not only achieves better prediction accuracy but also demon-
strates stronger robustness. Consequently, the modeling
scheme with CBAM in front of BiLSTM is considered
superior.

3.4.2 The impact of the amount of CBAM on BiLSTM

Although CBAM_f BiLSTM demonstrates better prediction
accuracy and robustness than CBAM b BiLSTM, it is
slightly less effective than the standalone BiLSTM model.
Therefore, the analysis now focuses on increasing the amount
of CBAM to examine its impact on prediction accuracy.

Fig. 7 displays the results of models with varying amounts

of CBAM on the test sets, ranging from 1 to 15. Table 5
presents the corresponding results, while Table 6 provides the
robustness analysis of these models. The symbols and calcu-
lation procedure in Table 6 are consistent with those in
Table 4.

From Fig. 7, it is evident that when the amount of CBAM
is set to 6 or 15, the proposed model performs poorly on
SZCI, despite its good performance on SHCI. Table 6 reveals
that in such cases, the standard deviation for each metric is
higher compared to the other results. Additionally, the mean
for each metric is negative. These observations indicate that
when the amount of CBAM is 6 or 15, the model not only
predicts worse than BiLSTM but also exhibits poor robust-
ness. Based on these experimental findings, it is apparent that
the prediction accuracy of CBAM-BILSTM significantly im-
proves compared to BiLSTM when the amount of CBAM is

A A o
7\
l\\—l—-I——l——l—l——l——'—l/—/-l\——l——l—l—l——l ° )
MAE ' - Soe N ,
- o N 4 \ PY / N /
~¢ \ » . 2 LRl Rhota el Vel by el BE S Sl EL EE i
L7 .- e “e-o-0-0-%-o 4
_________________________ Ll R
) A > >
lyI—-I——I——!—l——-——,;—l,—lt\—l——l—.——-——l //
MAPE | ‘e-e. -7 % .. /
N \¥-"/ AN Bog-E-CE B A - -E-E- B8 -
o . o ~ “e-o-0-0-0-4 4
______________________________________________________________________________________________________________________________________ )
[
/
RMSE ""_"__"_'_'_"__l_"/J:‘_"_'_'_"__' e )
- —o_o-& Plami 1 \ .9~ _q RN '
‘o v - ° t::—-I——=——I/—’I—\-:——l-—l—-l——l——l—l—-I-r—l
___________________________________________________________________ > ,____,__:t,___,\_:?,,_,_,_,_,_\,_\,Q:,_.:,:Q:‘:,._':,’:f_'f_: i,_,_)
e . ° e - - -
Y N //’*-. ’ e 7\ P ° :
R2 // \\ // ‘\ /'.\‘.' \\ . 0’./ ° \\ /‘ !
r—' v v ° E-E-a- - -E-E- 8-S - - 8-
°
B - B -B-S-% -B-E-E-8-B-8-8 -8 \
/7 \
< > >
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Amount of CBAM Amount of CBAM
-~ -- BiLSTM - @ -- CBAMn-BiLSTM

Fig. 7. Results for models with different amounts of CBAM on test sets, which are calculated based on the data without normalization.
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Table 5. SME of models with different amounts of CBAM on test sets.
SHCI SZCI
Model
MAE RMSE MAPE R MAE RMSE MAPE R

BiLSTM 34.0270 43.0277 0.01038 0.9448 30.8811 38.9196 0.01449 0.9400
CBAMI-BIiLSTM 35.3833 44.0236 0.01077 0.9404 30.6652 37.4941 0.01448 0.9466
CBAM2-BiLSTM 32.7574 41.2633 0.00995 0.9493 28.8200 35.8072 0.01352 0.9498
CBAM3-BiLSTM 32.5954 40.9043 0.00995 0.9505 26.9906 33.5097 0.01272 0.9582
CBAM4-BiLSTM 31.9710 40.5019 0.00978 0.9555 30.3758 36.5677 0.01446 0.9521
CBAMS-BIiLSTM 33.5174 41.7608 0.01024 0.9495 25.5348 32.3920 0.01206 0.9626
CBAM6-BILSTM 30.2781 38.5197 0.00924 0.9574 38.5297 45.5080 0.01867 0.9329
CBAM7-BiLSTM 32.1149 40.0215 0.00981 0.9537 28.8973 35.3460 0.01358 0.9514
CBAMS-BIiLSTM 33.6171 41.9892 0.01030 0.9500 24.8818 31.4335 0.01173 0.9646
CBAM9-BiLSTM 33.0362 41.2902 0.01014 0.9537 24.8027 32.4378 0.01163 0.9581
CBAM10-BiLSTM 35.4938 44.7713 0.01078 0.9525 25.3482 31.4534 0.01198 0.9647
CBAMI11-BiLSTM 30.7473 38.9105 0.00939 0.9563 25.7932 32.2218 0.01225 0.9658
CBAMI12-BiLSTM 31.0215 39.8307 0.00949 0.9552 26.7466 34.5033 0.01249 0.9573
CBAM13-BiLSTM 32.4862 41.4804 0.00993 0.9500 24.7747 32.3736 0.01161 0.9650
CBAM14-BiLSTM 31.6652 40.6338 0.00968 0.9528 24.5299 30.9824 0.01156 0.9657
CBAM15-BiLSTM 30.0401 38.5079 0.00916 0.9574 48.2636 56.2220 0.02378 0.9101

The above results are calculated based on the data without normalization. Five decimal places are retained because the MAPE values are too small.

not equal to 1, 6, 10, or 15.

Furthermore, Table 6 indicates that when the amount of
CBAM is 8,9, 11, 12, 13, or 14, the standard deviation for
each metric is smaller, while the mean for each metric is lar-
ger. This suggests that the model not only achieves higher
prediction accuracy but also maintains good robustness.

To further validate the experimental findings presented in
Table 6, the model confidence set (MCS) test is employed to
analyze the prediction accuracy and robustness of the models
with varying numbers of CBAM. Table 7 displays the MCS p
values for the models obtained by summing errors from dif-
ferent test sets. The MCS test in these experiments is imple-
mented using the Python library arch 5.3.1, with the random
seed set to 12345. It is important to note that the MCS p val-
ues are not the result of a probability calculation and do not
possess probabilistic significance. Instead, larger values indic-
ate higher prediction accuracy for the corresponding model,
with a maximum value of 1.

As observed in Table 7, when the amount of CBAM is set
to 11, the MCS p values for the model reach 1.00 for both test
statistics, indicating the model’s superior prediction accuracy.
In line with this, Table 6 demonstrates that compared to
BiLSTM, CBAMI11-BiLSTM exhibits an average reduction
of 13.06%, 13.39%, and 12.48% in MAE, RMSE, and
MAPE, respectively, while showcasing an average improve-
ment of 1.98% in R*.

3.5 Superiority and robustness of CBAM-BILSTM

The aforementioned experiments provide a comprehensive
analysis of the impact of the position and amount of CBAM
on the prediction accuracy of BiLSTM. This section further
explores the superiority and robustness of CBAM-BiLSTM in
terms of prediction accuracy and investment returns.

0204-9

First, the prediction accuracy of the models is examined
using different prediction methods on the test sets. Sub-
sequently, the influence of the training sample size on the pre-
diction accuracy of the proposed model is analyzed. Finally,
the experiments delve into the assessment of investment
returns generated by the models on the test sets.

Tables 8 and 9 present the outcomes of the SME and MCS
p values, respectively, on the test sets when models are based
on different prediction methods. Eq. (22) illustrates the ex-
pression for autoregressive one-step prediction, while Eq.
(23) showcases the expression for autoregressive multistep
prediction. Additionally, Eq. (24) demonstrates the expres-
sion for multivariate one-step prediction.

(y"hl’yf(ﬂ’... 7yff,x) = f(yn’ytz"” ’ylm))’ (23)
ytm :f{(yns"' syzﬁn)’(-xt,"" sxtm)y(hna"' shtﬁn)’
(lu [ alzf,o)s(vz, P ’V/bo)’(tn" o 7t150)}- (24)

Here, y; represents the closing price at moment i, x; refers to
the opening price at moment Z, /; denotes the highest price at
moment i, /; represents the lowest price at moment i, v;
signifies the volume at moment i, and ¢ represents the
turnover at moment i.

From Table 8, it is evident that the proposed model exhib-
its the minimum error in each prediction method. Moreover,
in Table 9, the MCS p values for the proposed model are con-
sistently 1 across all prediction methods. These findings rein-
force that, compared to other popular models, the proposed
model achieves the highest prediction accuracy across
different data sets and prediction methods. Thus, the results in
Table 8 and Table 9 validate the superiority and robustness of
the proposed model in terms of prediction accuracy.
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Table 6. Robustness analysis of models with different amounts of CBAM on test sets.
Mean Std
Model
MAE RMSE MAPE R MAE RMSE MAPE R
CBAMI-BiLSTM/BIiLSTM —1.64% 0.67% —1.86% 0.12% 3.3130 4.2267 2.7203 0.8284
CBAM2-BiLSTM/BIiLSTM 5.20% 6.05% 5.21% 0.76% 2.0813 2.7553 2.0567 0.3995
CBAM3-BiLSTM/BIiLSTM 8.40% 9.42% 8.17% 1.27% 5.9335 6.3395 5.6919 0.9355
CBAM4-BiLSTM/BIiLSTM 3.84% 5.96% 2.99% 1.21% 3.1154 0.1222 3.9342 0.1100
CBAMS5-BIiLSTM/BILSTM 9.41% 9.86% 9.01% 1.46% 11.1829 9.7776 10.9240 1.3442
CBAM6-BiLSTM/BIiLSTM —6.88% -3.23% —8.96% 0.29% 25.3039 19.3782 28.1168 1.4780
CBAM7-BiLSTM/BILSTM 6.02% 8.08% 5.88% 1.08% 0.5689 1.5523 0.6031 0.1906
CBAMS-BIiLSTM/BIiLSTM 10.32% 10.82% 9.88% 1.59% 12.8854 11.8944 12.9081 1.4632
CBAM9-BiLSTM/BIiLSTM 11.30% 10.35% 11.00% 1.43% 11.8594 8.9209 12.3802 0.6940
CBAM10-BiLSTM/BIiLSTM 6.80% 7.57% 6.75% 1.73% 15.7174 16.4304 14.9908 1.2796
CBAM11-BiLSTM/BIiLSTM 13.06% 13.39% 12.48% 1.98% 4.8348 5.4028 4.1799 1.0833
CBAM12-BiLSTM/BIiLSTM 11.11% 9.39% 11.18% 1.47% 3.2215 2.7700 3.7331 0.5238
CBAM13-BiLSTM/BIiLSTM 12.15% 10.21% 12.10% 1.61% 10.7805 9.3502 10.9872 1.4890
CBAM14-BiLSTM/BIiLSTM 13.75% 12.98% 13.43% 1.79% 9.6350 10.4866 9.5498 1.3349
CBAM15-BiLSTM/BIiLSTM —22.29% -16.98% —26.21% —0.92% 48.0869 38.8633 53.6066 3.1929
The above results are calculated based on the data without normalization.
Table 7. MCS p values on test sets.
R statistic MAX statistic
Model
MSE MAE HMSE HMAE MSE MAE HMSE HMAE
BiLSTM 0.000 0.000 0.000 0.000 0.009 0.009 0.009 0.009
CBAMI1-BiLSTM 0.000 0.000 0.000 0.000 0.009 0.009 0.009 0.009
CBAM2-BiLSTM 0.048 0.048 0.048 0.048 0.423 0.423 0.423 0.423
CBAM3-BiLSTM 0.186 0.186 0.186 0.186 0.831 0.831 0.831 0.831
CBAM4-BiLSTM 0.000 0.000 0.000 0.000 0.234 0.234 0.234 0.234
CBAMS5-BiLSTM 0.045 0.045 0.045 0.045 0.807 0.807 0.807 0.807
CBAMG6-BIiLSTM 0.000 0.000 0.000 0.000 0.009 0.009 0.009 0.009
CBAM7-BiLSTM 0.155 0.155 0.155 0.155 0.807 0.807 0.807 0.807
CBAMS-BIiLSTM 0.000 0.000 0.000 0.000 0.831 0.831 0.831 0.831
CBAM9-BiLSTM 0.186 0.186 0.186 0.186 0.831 0.831 0.831 0.831
CBAMI10-BiLSTM 0.040 0.040 0.040 0.040 0.423 0.423 0.423 0.423
CBAMI11-BiLSTM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
CBAMI12-BiLSTM 0.186 0.186 0.186 0.186 0.831 0.831 0.831 0.831
CBAMI13-BiLSTM 0.155 0.155 0.155 0.155 0.831 0.831 0.831 0.831
CBAM14-BiLSTM 0.385 0.385 0.385 0.385 0.831 0.831 0.831 0.831
CBAM15-BIiLSTM 0.000 0.000 0.000 0.000 0.003 0.003 0.003 0.003

CBAMz#n-BILSTM denotes CBAMs-BiLSTM containing # CBAMs. The MCS p values of the models are not the result of a probability calculation and do
not have probabilistic significance. The above results are calculated based on the data without normalization.

Fig. 8 illustrates the influence of the training set size on the
prediction accuracy of CBAM-BILSTM, with R* selected as
the metric. It is observed that R’ remains highly consistent as
the size of the training set varies across each data set. This
stability reinforces the notion that the proposed model exhibits
strong robustness in relation to the size of the training set.

Ideally, a market prediction system can be integrated as a
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module within a trading system, where improved prediction
accuracy is expected to yield higher profits. In this context,
we present experiments that utilize the proposed model as the
prediction subsystem of a simple trading system. It is import-
ant to note that the overall performance of the system
depends on how the predictions are utilized for trading. The
trading strategy employed in our experiments is as follows: if
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Table 8. SME for different prediction methods on test sets.

SHCI SZCI
Prediction method Model
MAE RMSE MAPE R MAE RMSE MAPE R
CNN 37.6814 47.6687 0.01146  0.9283 28.3603  36.9023 0.01345 0.9515
LSTM 32.0276  42.6244  0.00973  0.9451 33.7055 40.9462 0.01597  0.9362
BiLSTM 34.0270  42.0277 0.01038  0.9448 30.8811  38.9196 0.01449  0.9400

Autoregressive one-step prediction
CNN-LSTM 343729  43.0901 0.01046  0.9428  26.8299  34.0354  0.01266  0.9569

CNN-BILSTM 33,6111 42,6511 0.01024 0.9447  26.0393 33.6091 0.01229  0.9586
CBAMs-BiLSTM  30.0401  38.5079  0.00916  0.9574  24.5299  30.9824  0.01156  0.9657

CNN 62.6576  75.6104 0.01899  0.8106  57.1727 69.0520 0.02756  0.8369
LSTM 55.8078  70.1163  0.01694  0.8515 583186 70.6678  0.02797  0.8244
BiLSTM 52.5381 67.0115 0.01590 0.8621 58.2896  70.2769  0.02803  0.8158

Autoregressive multistep prediction
CNN-LSTM 60.7637  72.1551  0.01840 0.8263  55.8181  68.5404 0.02673  0.8487

CNN-BiLSTM 542639 67.6053 0.01648 0.8622  54.5331 66.8516 0.02630  0.8503
CBAMSs-BiLSTM  49.7695  64.2500  0.01496  0.8817  50.6251 62.4469  0.02410 0.8789

CNN 40.6929  56.1362  0.01217 0.9024  36.8902  45.5928 0.01735  0.9256
LSTM 30.0031 41.7864 0.00903  0.9466  35.3793 425291 0.01667  0.9279
BiLSTM 29.7076  41.8334  0.00892  0.9418  30.2780 38.2994 0.01424  0.9433

Multivariate one-step prediction
CNN-LSTM 34.0978 44.6628 0.01034  0.9455  34.3397 425123  0.01609  0.9256

CNN-BILSTM 31.3454 43.5541 0.00944 0.9369  29.7848  37.3321  0.01408  0.9476
CBAMs-BiLSTM  27.9779  39.0993  0.00843  0.9500  27.6592  35.5245 0.01284  0.9482

The above results are calculated based on the data without normalization. Five decimal places are retained because the MAPE values are too small.

Table 9. MCS p values for different prediction methods on test sets.

R statistic MAX statistic
Prediction method Model
MSE MAE HMSE HMAE MSE MAE HMSE HMAE

CNN 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001

LST™M 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001

BIiLSTM 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001

Autoregressive one-step prediction

CNN-LSTM 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

CNN-BiLSTM 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
CBAMSs-BiLSTM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

CNN 0.024 0.024 0.024 0.024 0.313 0.313 0.313 0.313
LSTM 0.041 0.041 0.041 0.041 0.555 0.555 0.555 0.555
BIiLSTM 0.041 0.041 0.041 0.041 0.555 0.555 0.555 0.555
Autoregressive multistep prediction
CNN-LSTM 0.023 0.023 0.023 0.023 0.555 0.555 0.555 0.555

CNN-BILSTM 0.073 0.073 0.073 0.073 0.555 0.555 0.555 0.555
CBAMs-BiLSTM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

CNN 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001
LSTM 0.000 0.000 0.000 0.000 0.020 0.020 0.020 0.020
BiLSTM 0.018 0.018 0.018 0.018 0.110 0.110 0.110 0.110
Multivariate one-step prediction
CNN-LSTM 0.000 0.000 0.000 0.000 0.020 0.020 0.020 0.020

CNN-BiLSTM 0.018 0.018 0.018 0.018 0.110 0.110 0.110 0.110
CBAMSs-BiLSTM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

The above results are calculated based on the data without normalization. The MCS p values of the models are not the result of a probability calculation
and do not have probabilistic significance.
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Fig. 8. Impact of the size of the training set on the prediction accuracy of
CBAM-BIiLSTM.

the predicted price for day £+ 1 is higher than the true price
for day ¢, the predicted label for day ¢ is considered “up”; oth-
erwise, it is considered “down”. When the predicted label for
the next day is “up”, the trading system fully invests in the
corresponding index and holds the shares until a “down’
label is encountered, at which point the system closes the
position.

In this trading strategy, each individual prediction made by
the models influences the trading performance and ultimately
impacts the overall profit. To assess the performance of the
trading system, we utilize the Sharpe ratio. Table 10 presents
the Sharpe ratios of different predictive models on the test
sets. In the table, R, represents the return sequences of the
models, E(R,) indicates the mean of the models’ return se-
quences, o, represents the standard deviation of the models’
return sequences, and “Sharpe” denotes the Sharpe ratio of
the models. The numerical values in Table 10 demonstrate
that employing the predictions of the proposed model as the
foundation for the trading strategy leads to satisfactory res-
ults. This further confirms that, in terms of investment re-
turns, the proposed model exhibits superiority and robustness
when compared to other popular models.

3.6 Findings

In summary, the experiments conducted a detailed analysis on
the impact of the position and number of CBAMs on
BiLSTM. The results confirmed that CBAM has the ability to
enhance the prediction accuracy of BiLSTM, and this im-
provement exhibits good robustness. Furthermore, the
proposed model’s superiority and robustness in terms of pre-
diction accuracy were confirmed through comparisons with

l

Table 10. Sharpe ratio of models on test sets.

other popular models, as well as by varying the prediction
method and data sets. Additionally, the experiments demon-
strated the model’s robustness in relation to the size of the
training set. Finally, the experiments affirmed the model’s su-
periority and robustness in terms of investment returns.

Overall, the experimental findings provide strong evidence
supporting the effectiveness and reliability of the proposed
model. The results indicate that integrating CBAM into the
BiLSTM architecture enhances prediction accuracy and ro-
bustness across various scenarios and data sets. These find-
ings contribute to advancing the understanding and applicab-
ility of the proposed model in real-world scenarios involving
market prediction and trading systems.

4 Conclusions

4.1 Summary

To address the issue of low accuracy in stock index predic-
tion, this paper introduces a novel model called CBAM-
BiLSTM, which combines multiple CBAMs with a BiLSTM
architecture. The experimental evaluation is conducted using
the SSE Composite Index and the SZSE Composite Index as
the data sets. The performance of various models is assessed
using standard metric evaluation and model confidence set
test methods. The final results demonstrate that CBAM-BiL-
STM exhibits superior performance and robustness in terms
of both prediction accuracy and investment returns.
Moreover, the experiments include a comprehensive analysis
of the impact of CBAM position and amount on the predic-
tion accuracy of the BILSTM model.

Overall, this research introduces a novel model that effect-
ively addresses the challenge of accurate stock index predic-
tion. Through rigorous evaluation and analysis, the proposed
CBAM-BIiLSTM model shows its superiority and robustness
compared to other models. The findings provide valuable in-
sights into improving prediction accuracy and investment re-
turns in the field of stock market analysis.

4.2 Discussion and outlook

The proposed CBAM-BiLSTM model demonstrates its com-
petence in predicting stock price indexes compared to other
hybrid predictive models based on machine learning methods
from the literature. In this study, our model achieves a minim-
um MAPE of 0.0084 (0.84%) and a maximum R’ value of
0.9657. In previous studies, Md et al.b” achieved an R* of

Model SHCI SZCI
E(R,) o, Sharpe E(R,) o, Sharpe
Buy and hold —0.00046 0.01117 —0.04091 —0.00125 0.01478 —0.08427
CNN —0.00025 0.00670 —0.03697 —0.00061 0.01140 —0.05366
LSTM 0.00002 0.00824 0.00293 —0.00001 0.00770 —0.00183
BILSTM 0.00023 0.00656 0.03466 —0.00070 0.01059 —0.06633
CNN-LSTM 0.00025 0.00580 0.04339 0.00036 0.00947 0.03801
CNN-BiLSTM 0.00027 0.00599 0.04523 —0.00023 0.00971 —0.02401
CBAMSs-BiLSTM 0.00032 0.00599 0.05354 0.00036 0.00426 0.08395
Five decimal places were retained due to small values.
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0.981 for Samsung stock. Magbool et al.t* obtained a MAPE
of 1.55% for the HDFC bank stock price data set. Giilmez"™”
achieved R? values ranging from 0.814 to 0.975 for various
stock data sets. Cui et al."” obtained an MAPE of 0.62% for
the SSE Composite Index.

It is acknowledged that the robustness of model forecast-
ing can vary between tranquil and turbulent periods due to the
idiosyncratic patterns of the data; however, this issue can be
further addressed by considering hyperparameters. For in-
stance, the number of BiLSTM modules and the number of
neurons were not extensively explored in this study. There-
fore, future research will aim to develop appropriate methods
for selecting hyperparameters to further enhance the predict-
ive performance of the proposed model.

Regarding applications, future work will involve incorpor-
ating more contributing feature variables to improve the pre-
dictive performance of the model. However, it is important to
note that the variables used to predict composite stock in-
dexes and individual stock prices differ significantly. Com-
posite stock indexes may require macrolevel variables such as
GDP growth rate, inflation rate, interest rate, government
fiscal policy, and international trade situation. On the other
hand, individual stock prices tend to focus on internal factors
of the company and the market’s supply and demand relation-
ship. Therefore, future research plans involve utilizing natur-
al language processing techniques to extract variables that im-
pact stock indexes, thus boosting the prediction performance.
Furthermore, since Ref. [32] suggests that solely constructing
predictive models in terms of improving the precision may
not yield good investment returns, future plans meanwhile
cover investment returns as the primary aim to enhance the
practical utility of the proposed model.
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