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A novel network game model is proposed to quantify social interaction with peer pressure in dynamic networks. New algorithms are de-
signed to identify homogeneity. The NPLE method is introduced to estimate the model parameters.

Public summary

m This paper introduces the Generalized Constant Peer Effect (GCPE) model, a novel network game model that quantifies
social interactions within dynamic networks.

m The proposed model can efficiently mitigate estimation inaccuracies related to peer pressure by integrating homogeneity.

m We design innovative algorithms to accurately identify homogeneity. Then we apply the Nested Pseudo-Likelihood Es-
timation (NPLE) method to obtain consistent estimators of parameters.
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Abstract: Social interaction with peer pressure is widely studied in social network analysis. Game theory can be utilized to
model dynamic social interaction and one class of game network models assumes that peopleos decision payoff functions
hinge on individual covariates and the choices of their friends. However, peer pressure would be misidentified and induce
a non-negligible bias when incomplete covariates are involved in the game model. For this reason, we develop a general-
ized constant peer effects model based on homogeneity structure in dynamic social networks. The new model can effect-
ively avoid bias through homogeneity pursuit and can be applied to a wider range of scenarios. To estimate peer pressure
in the model, we first present two algorithms based on the initialize expand merge method and the polynomial-time two-
stage method to estimate homogeneity parameters. Then we apply the nested pseudo-likelihood method and obtain consist-
ent estimators of peer pressure. Simulation evaluations show that our proposed methodology can achieve desirable and ef-
fective results in terms of the community misclassification rate and parameter estimation error. We also illustrate the ad-

vantages of our model in the empirical analysis when compared with a benchmark model.
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1 Introduction

People’s behavior based on individual interactions in social
networks has been widely studied by researchers! . The indi-
vidual’s behavior needs to take into account the effect of peer
pressure between connected nodes in dynamic social net-
works, i.e., the influence of partners in decision-making. For
example, when conducting surveys on students’ smoking be-
haviors, people usually only know whether the student has
smoked during a particular time period. Peer pressure refers
to the influence of the behaviors of friends on these students’
smoking behavior. Game theory is commonly utilized to de-
scribe social interactions in networks*. Through observa-
tion, we can discover that those who make the same decision
often have similar characteristics, which is homogeneity. The
homogeneity structure is quite common in social network
analysis’ 2. Peer pressure is a type of social influence that is
often confused with homogeneity when discussing individual
behavior, see Refs. [12, 13]. Ref. [14] studies a practical
problem that takes homogeneity into account. Therefore, to
obtain more accurate estimates of peer pressure, it is neces-
sary to consider the impact of homogeneity on peer pressure.
However, the above study based on game theory on peer pres-
sure does not consider the potential confusion between social
influence and homogeneity, which may lead to bias in the es-
timation of social influence. There is some relevant work on

distinguishing homogeneity from social influence, see
Ref. [13, 15, 16]. It is necessary to consider the impact of ho-
mogeneity in game models to obtain more accurate peer pres-
sure. Therefore, combining the two is meaningful research.
Game theory can be used to statistically model dynamic so-
cial interaction with peer pressure, and one class of game net-
work models usually assumes that people's decision payoff
functions depend on individual covariates and their friends’
decisions and then derives the corresponding conditional
choice probability equations based on the payoff functions. In
Refs. [17, 18], they discussed a dynamic game problem based
on Markov games, but the focus of their research was not
peer pressure. However, the deduction approach for dynamic
games can be applied to other models. Ref. [19] proposed the
concept of “individual behavior influenced by others”. Ref.
[20] proposed the concept of “local interaction” for the first
time. Based on the above work, Ref. [7] proposed a static net-
work game model with incomplete information to study the
estimation of peer pressure. Ref. [8] expanded upon the mod-
el in Ref. [7], allowing for peer pressure to depend on social
influence, but the model remains limited to static scenarios.
Their studies did not take into account the effect of homogen-
eity on individual decision-making, which might lead to bias
in the estimation of peer pressure confounded with homogen-
eity. In addition, they implied that the observed covariates
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were complete. However, this is difficult in practice, which
can also lead to estimation bias.

Homogeneity pursuit is an effective way to avoid possible
bias caused by incomplete covariates, where incomplete cov-
ariates imply the existence of node attributes related to the
formation of social relationships or to node behavior that have
not been observed!’. People tend to interact with people who
are similar to them, which implies that homogeneity plays a
crucial role in the formation of social network structures and
it indeed has an influence on individual behaviors"". Ref. [13]
introduced a continuous potential space setting to estimate ho-
mogeneity to correctly identify social influence. Ref. [15]
used the potential community setting to estimate homogen-
eity. Both [13] and [15] noted that reducing the estimation bi-
as of social influence can be effectively achieved by consider-
ing homogeneity. Based on the above work, Ref. [16] pro-
posed a linear model for explaining social interactions in ho-
mogeneous social networks, and when the estimation of ho-
mogeneity meets certain conditions, the estimator of the mod-
el converges. However, people’s behavior is discrete in many
scenarios, and the property of consistent convergence of cor-
responding parameters no longer holds in our game network
model. Then, the homogeneity estimation method is no longer
applicable in our model's corresponding network, and we
need to redesign the estimation method for homogeneity.
Moreover, Ref. [16] assumed that different individuals have
the same influence on each other, which does not align well
with reality.

This study introduces a new game model with individual
homogeneity to characterize social interactions with peer
pressure in dynamic networks. The new model is called the
generalized constant peer effect (GCPE) model. To construct
such a dynamic network model, we adopt a Markov perfect
equilibrium as the game to obtain an equilibrium solution and
then give the conditional choice probability equation. The
GCPE model assumes that discrete individual decisions are
determined by the covariates unrelated to homogeneity, peer
pressure, homogeneity, and random disturbance terms. It can
be thought of as the extension of the game model in Ref. [§]
and the model in Ref. [16]. We propose a simple, efficient,
and accurate estimation procedure to estimate homogeneity
and peer pressure. Specifically, we first utilize two al-
gorithms based on the initialize expand merge method and the
polynomial-time two-stage method to estimate homogeneity
parameters because homogeneity cannot be directly observed.
Then we apply the nested pseudo-likelihood (NPLE) method
to efficiently obtain consistent estimators of peer pressure.

The remainder of this paper is organized as follows. In Sec-
tion 2, we present a generalized constant peer effect (GCPE)
model. Two algorithms are given to estimate homogeneity in
Section 3. In Section 4, the NPLE method and the corres-
ponding theoretical properties are represented. In Section 5,
we demonstrate the estimation results of the homogeneity al-
gorithm and validate the theoretical results of the NPLE es-
timator. Section 6 compares the results of our proposed mod-
el with a benchmark model in applications to real data. Con-
clusions are provided in Section 7. The proof details of theor-
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ems and some simulation results are given in the Appendix.

2 Generalized constant peer effects model

We consider a Markov game model in dynamic social net-
works. The dynamic network is a series of random graphs
consisting of nodes with directed edges. Let i€ 7 ={1,---,n}
denote each node. The relationship between nodes at time
te7 ={l,---,m} is represented by the adjacency matrix
G' e R™, where the (i, j) entry g/, = 1if individual i thinks j is
his/her best friend at time ¢, and g}, = 0 otherwise. we follow
the convention to let g, =0 for i€ 7 and €7 . Denoting
Fi={je1:g,=1}tobe the group of i’s best friends.

The latent community partition of each network is denoted
by D=(D,,---,D,), where M <n isthe number of com-
munities. Under the potential community setting, we refer to a
class of multi-graph community identification methods,
where a dynamic network is a kind of multi-graph network,
such as Ref. [21, 22]. This type of research considers com-
munity labeling to be global, not local. Specifically, MIT
Reality Mining data in Ref. [21] is a dynamic network data-
set, but community identification is performed by identifying
a global community label for it as a whole rather than a local
community label for each moment of the network individu-
ally. Therefore, let C; be the homogeneity parameter of node i
that does not change over time and it takes the following
value:

M
C =) dlieD),

J=1

where d; is the community-specific parameter in community
D,.

In dynamic social networks, we record the social behavior
of node i at time ¢ € (—o0,+00) as Y; € {0, 1}. Y/ can be the stu-
dent’s decision to smoke or not as mentioned above. It is
worth noting that our model introduced later also allows for
multiple values of Y/ without loss of generality. Then the util-

ity function of node i is given by

Uy =k.y . X,C,&;6) =
(4 1 t t 4 ¢
Xpo+ 5 D a(S)XAY; =k +Cy, + £ (k).

JjEF!
Here, y', is the behavior vector of all nodes except node i.
X! e R is the covariate vector of individual i that is not relev-
ant to homogeneity parameter C.. Q) is the total number of i’s
best friends at time ¢, we set Q) =1 if Q! =0 to ensure that
1/Q; makes sense. S, is a social-influence measure of node j
on node i at time #; 1(A) is an indicator function of a set A;
gl(k)eR are unobserved action-dependent utility shocks,
where k€{0,1}. Let & ={£/(0),&/(1)}. Moreover, B, is the
coefficient vectors to be estimated for X!, y, isthe coeffi-
cients vectors to be estimated for C;, and «,(-) are unknown
functions that measure the peer pressure on player i from
his/her friend ; when they make the same decision for
ke{0,1}.

Under the condition of maximizing the total expected dis-
counted payoff, we use a Markov game to derive the payoff
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function with a homogeneous structure as the following con-

ditional choice probability equation, i.e., the GCPE model:
exp{ui(y: = 1{TW";0) — ui(y; = O|W"; 6)}

[+ explu(y = [[W6)— u(y, = O[W;6)}”

Py, =1IW") = (1)

where

, 1
KIW'30) = XB+ — > y(S') X P, = KW' + Cly,

i

W) =

Rl
JeF;

w=X,C,G), C=(C,,---,C,) is the set of homogeneity of
nodes in the network, 6 is the parameter to be estimated and
will be introduced later in detail, and the total expected dis-
counted payoff function will also be introduced later. The
GCPE model describes how individual i’s decision-making is
influenced by self factors and his/her social friends. The de-
tailed derivation is described in Section 2.1.

2.1 Model derivation

Markov perfect equilibrium

In dynamic games, the adjacency matrix G' will change
over time, and the state variables (X!,&!) will change as play-
ers make decisions. Therefore, their change is described by an
exogenous probability. To solve for Markov perfect equilibri-
um solutions, we further make the assumption of conditional
independence of their changes:

Assumption 2.1. The exogenous probability function satis-
fies conditional independence, that is,

p(XHl’y:’g;H ’Gr+l |X1’yr7i’yr71 ,C, Gt’ 8:) —
pXTLyIX LYy PG CO)pE). 2

This assumption is quite common for Markov games, such
as Refs. [17, 18]. Player i pursues the highest expected return,
usually demonstrating long-term consideration in the Markov
game. Let 57 € (0, 1) denote the discount factor. Given the state
(X],&)) at time t, player i will make a series of decisions to
maximize its total expected discounted payoff, i.e.

MY
T=t

max E{Z T U LY XL C.el0)|(X', C, G',s;)} :

where the expectation is taken over the state evolution given
in Eq. (2).

Because the state transition is stationary, we adopt the
Markov perfect equilibrium as the equilibrium concept, and
thus the time index ¢ can be omitted from the notation. Let
P,(y/W) be the conditional selection probability of player i
choosing decision y, €{0,1} in state W =(X,C,G). Given
P,(y,|W), Vj#1i, the current expected payoff of player i
choosing decision y, in state W is

u(y; = kW, 6) =
2 ([ [PoIUG.y-.X.C.00 =
yoi€0,1" ! yjey;
1
X'Bi+ E Z ak(Sji) X P(y; = kW) + C;)’k-

JeF;

Bellman optimality. Let V,(x) be the conditional expecta-
tion function of player 7 in state x. For any i € 7 and W € ‘W,

-3

we have

V(W) = Z Py W) [, ([ W30) + €] (v, W)+

yi€eY

n [ VW), OB TR,

where f],(W'|W) is a conditional density function of state W’
when given W, and e’ (y;, W) is a function related to the distri-
bution of &;(k).

Conditional choice probability equation. Let v,(y,[W) be
the conditional choice-specific expected value function of
player i, then

VW) = w5 0) 47 [ VICOW) L, (W W,y )dW . (3)
where f;,(W'[W,y,) is a conditional density function.

When the private shocks &; are observed, player i makes de-
cision y,=k if and only if ke argmax,,,{v.(y; = kIW)+
&(y; = k)}. Therefore, we have

P.(y; = kIW) =Prlg;|v.(y; = KIW) + &,(y; = k) >
max {v,(y; = jIW) +&(y; = N}
Je(0.1}—{k}

Conditional choice probability equation

To derive the above equation more specifically, we give the
following assumption about the distribution of private shocks
gl(k).

Assumption 2.2. The error terms &i(k), ie{l,---,n},
k€{0,1} are independent and identically distributed (i.i.d.)
across both players and actions at time ¢. Furthermore, the
error term follows the extreme value distribution (Type 1)
with density

f(@) = exp(=t)exp(—exp(-1)).

Assumption 2.2 is often used in game network models™* "
"I, Note that the Gaussian distribution and other distributions
can also be applied to derive the conditional choice probabil-
ity equation, but the corresponding formulation will be more
sophisticated than that of the extreme value distribution (Type
I). Under Assumption 2.2, we can derive a simple form of
P.(y; = k|W), that is

exp{vi(y: = W)}

Py = kW) =

B >

> explv (v, = kW)

k=1
ie.,

exp{vi(y; = IIW) —v,(y; = O[W)}

PO = ) = oo = 1T — v = O]

“4)

The following assumption is imposed to simplify Eq. (4).

Assumption 2.3. f,(W’|W,y,) is independent of y,.

Since homogeneity replaces the attribute variables X in
state W, which are relevant to the players’ decisions, thus As-
sumption 2.3 is reasonable. Under Assumption 2.3, we fur-
ther simplify Eq. (4) and continue to use the symbol . The final
solution yields our proposed GCPE model:

expl{u;(y; = IIW';0) — uj(y; = O[W'; 6)}
I +explui(y, = 1[W;6) —ui(y; = 0[W;0)}

Py, = 1IW") =
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2.2 Model linearization

For the sake of tractability, we linearize a(-) for empirical
analysis, see Refs. [7,8], let ai(s)=¢,+¢ xs and
a,(s) = ¢+ ¢, Xs. For model identification, we set 5, =0,
v, =0 and ¢, =0. By following Ref. [8], we can treat
Pi(y,=1W") as a known object. Let T/ =InPi(y, = 1|[W")—
In(1 - Pi(y; = 1/W")), we can obtain that

SU(P(y. = 1[W)—1)
T =X/, + L -
i Bt ; 0
Py = 1[W") St Py = 1[WY)
o Z IJT +, Z #

+C;71’ (5)

- —
JEF} JEF;

where ¢, represents the peer pressure effect exerted by node i’
s friends who are different from node i’s decision when the
social influence of nodes in the network is different. ¢, quan-
tifies the peer pressure effect of node i’s friends, whose de-
cisions are the same as node i when the social influence of all
nodes is equal. ¢, refers to the peer pressure effect of node i’s
friends whose decisions are the same as those of node i when
nodal social influence remains fixed in the network.

Our target parameters can be denoted by
0=(B,,¢1,90,$1,7,) €O, where O is the parameter space. Let
6, € O be the true parameter for the game.

3 Estimation of homogeneity

As stated in Ref. [16], we cannot directly observe the homo-
geneity parameter C; of player i. Thus we turn to utilizing the
attribute covariates of player i and its social relationships to
approximately estimate the homogeneity parameter C,. C de-
notes the estimated homogeneity vector of C.

We follow the idea of Ref. [23] and define a weighted adja-
cency matrix W as follows:

.G

€T

W, =a-T— +(1-a)f(X, X)),
where f(X;,X;) is a function that takes values between 0 and
I, 0<a<1 is a constant. The number of edges in the
weighted directed network is too large, thus we choose to de-
lete the edges with smaller weights to ensure that our pro-
posed algorithms can work. Specifically, we set W; =0 if

i < Woems Where wyeqs is the 0.625 quantile of W. Let
FY'={jeIl:W,>0},and F¥ ={F},--- ,F}.

For community identification of homogeneity parameters,
we first present a revised algorithm of the IEM algorithm in
Ref. [24]. We use Sim[;“® to replace Sim", where Sim"
follows the pattern of the directed network formation corres-
ponding to the GCPE model. Then, the IEM algorithm pulls j
into the community of i when j = argmax .S im;¥, but we in-
stead pull 7 into j’s community, which is more consistent with
our model and can effectively improve algorithm efficiency.
In summary, our proposed Algorithm 1 (initialize-expand-
merge-change method) can be applied to directed weight net-
works.

Although Algorithm 1 is able to estimate the communities
of heterogeneous parameters very well, there is a more

Algorithm 1. Initialize-expand-merge-change (IEMC) method.
Inu;)ut: Weighted adjacency matrix W, Node’s best friend group
F

Output: Community assignment o°, the number of
communities k.
1: Select a random unlabeled node i and label node i.

2: Find a node j € I to maximize weighted similarity based on
transit node Sim];* and a labeled node j, where

0, if W,‘j = 0;
Wij .
s ]fWij >0 and Wik = Wi =0;
Z Wik+z ij— W,'_/
kel kel
- JEMC _
Simii = Z Wi = Wik + Wy

D eri if k€ [k : Wyx W > 0)

, 1 (S : Wik * Wij > 05,
|FZV|ZWih +ZW/1j_Wij
hel hel

3: If node 7 and node j are not in the same community, merge the
communities of node i and node j, then let i = j and back to Step
2.

4: If node i and node j are in the same community, and there are
unlabeled nodes in I, back to Step 1.

5: Let C be the current community collection and calculate Q(C),

where
Z Wik + Z ij
1 k k
o) = (Wi —
22 Wi ,Z/ QZ Wij
ij ij
6:fori=1to|C|-1and j=i+1to|C| do
7: Merge community i and community j and record this new

community collection as C_;;, then calculate Q_;; = Q(C_;;)
8: end for

9:if maxc_;(Q-i) > Q(0), letC= argmaxc_l,/_(Q,,-j) and back to
Step 5; else return o°(i) = C(i) for all i € 7 and k = |C].

(Ci =C)).

charming algorithm in™"' that bounds the probability of mis-
classification, which is of order e“®. However, their al-
gorithm is only suitable for undirected networks, thus it can-
not be directly used in our GCPE model. To further improve
the accuracy of community identification, we design a modi-
fied cross-validation version of Algorithm 1 and introduce
Algorithm 2. Compared with the Algorithm 1, Algorithm 2
simplifies and changes the initial screening Steps 2—4 in Al-
gorithm 1 at the cost of heavy computation. Based on the idea
of Ref. [25], we present our Algorithm 2.

Algorithm 2. A refinement scheme for community detection.
Input: Weighted adjacency matrix 7, number of communities
k, initial community detection method o© (i.e., Algorithm 1).
Output: Community assignment &.

1:fori=1ton do

2: Apply ¢ on W_; for all j # i, obtain ¢¥(j) and o(i) = 0, where
W_; denotes the (n—1)x (n—1) submatrix of W with its ith row
and ith column removed.
3: Define & : [n] — [k] by setting &:(j) = o-?( j) for all i # j where
[n] ={1,---,n}, and
&i(i) = argmax ey Z Wij.

()=t
4: end for
5: Define &(i) = 5i(i). Fori=2,--- ,n, define
(i) = argmax;el{j : 1)) = 1N {j: 5i()) = G}
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Assumption 3.1. As n — oo, Pr(C#C)—0.

Assumption 3.1 is reasonable for homogeneity estimation.
Refs. [26, 27] pointed out that it is possible to consistently re-
cover the communities for networks based on latent com-
munity setting when very mild regularity conditions are satis-
fied. The homogeneity structure in our proposed GCPE mod-
el is the latent community setting. In addition, after summar-
izing many relevant studies, Ref. [16] mentions that there are
many community detection methods that satisfy this assump-
tion. One such method is described in Ref. [25], and it
provides us with a framework for constructing 2. In Section 5,
we show numerically that the community misclassification
rate of the two algorithms in the GCPE model tends to 0

when n — oo,

4 Estimation of peer pressure

Once we obtain the estimated homogeneity vector C, we can
plug C into the linearization form of the GCPE model in Eq.
(5). Let W=(X,C,G) and T'=InP(y=1]W")-In(1-
P'(y'=1|W")), we have

Liuetal.
_ SL(P(y = 1[W) -1
:X:‘[,BIJ"QEIZ A0, rl ) )I
pr= o
o PO =W SR =1 W)
¢OZ - jQz +¢IZ — Qz Ciyl'
jeF! i jeF! i
Our target parameters can be denoted by

=B, 1,40, ¢1,7,) €0O. Let §, be the true parameter given
C. However, the estimation procedure of & by directly using
the maximum likelihood method may suffer from a huge
computational burden caused by the game. Therefore, we in-
troduce the nested pseudo-likelihood estimation (NPLE)
method to address the problem of excessive computation. We
further provide theoretical properties of the NPLE method.

4.1 NPLE method

In a large dynamic game network, it is obviously more diffi-
cult to calculate the equilibrium solution. The NPLE method
can effectively alleviate the problem of excessive computa-
tional burden, and it is essentially an iterative algorithm con-
sisting of a series of logit estimates that is easy to implement.
In the later subsection we prove the convergence property of
the NPLE method, which guarantees the accuracy of the
method. To describe the NPLE method in our model, let

S PI - l Wi — 1 Pt‘ t. — l W! S Pt I — 1 Wr
Z’_’: Xi,z ( (y/ [I ) )’Z /(y/ I | )’Z Ji /(y r | ),C: ,
— o P o - o
. o SHPO =W 1) o PO, = 1HW) o S5 PO, = 1TWY)
ZII — X: , Ji I~ - , J 1 , Jit JNV - ’Ci s
PCW) = (PO, - PO W)Y and L.(6,%) =
P =(p|,---,p.) €[0,1]" be the Markov perfect equilibrium

choice probability solution and a general probability distribu-
tion at time . For any ' € [0, 1]", we have

Z:(gB,):[X;f’Z ,,(PJ—I) ZQ,’Z é{’;’c) € R“™,
Z®) = x;LZS“(p % o e /'p eR,

JEF} JeF! JjeF!

Then, the corresponding conditional choice probability equa-
tion is

b g = S0
' 1+exp(Zi($)0)

We denote P'(6; W) as the solution of the equation:
I (P,0; W) = p! for all t€ T and i € I. Note that we cannot
directly determine P~ (W) = B'(0; W), because it is difficult
to guarantee the uniqueness of the structural parameters 6,
that is, a solution may correspond to multiple structural para-
meters 6. Nevertheless, we can determine PB~“(W')=
P'(G,; W), where B'(6,; W) is unique. we further define a
pseudo log-likelihood function:

-5

- ZZ (Y/n (%,8: W) + (1 - ¥)In(1 = TP, 8, W),
=1 i=1

where P = (P, ---,P"). Note that we are using the estimated
homogeneity parameter C instead of the true homogeneity
parameter C. If we want to obtain the pseudo log-likelihood
function corresponding to the true parameter 6,, we need to
use the true homogeneity to construct the function. Therefore,
we define the limiting form of this pseudo log-likelihood
function as follows:

L8, ‘B) =
ZZE(Y’InF’ (P,0; W) + (1 - Y)In(1 - T (B, 6, W'))),

=1 =l

lim —

o 1

Based on the pseudo log-likelihood function, we apply the
NPLE method to estimate the parameters of interest, i.e.,

éNPLE = argmax Z‘n(é’ B).
0O

where B = [(T,0; W).

First, we follow Ref. [7] and set the initial value of P to
be (0,---,0) € [0, 1]™". Second, we conduct an iterative pro-
cedure over the two steps described below:

Step 1: Given UV, let

6% = argmax L, (6, BY™).
0€©
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Step 2: Given 69, let
PP = T(PU, 59, W),
where
(R, 0, W) =T, 0, T, -« T2 (B,6,F), -,
L7 OB, 097, (B, 6,7,

W: (Wl’“. ,Wm).

When Hé“’ —é‘k’“” <cor |[|PP —P*|| < ¢ (c is small enough,
e.g., 107%), we stop iterating. Then we have Gy ; = 6%

Although there is an excellent condition to ensure the local
convergence property of the NPLE algorithm in Ref. [28], it
is still difficult to verify the uniqueness of the equilibrium
solution in our model. However, this does not mean that we
cannot use the NPLE method, because extensive experience
through application shows that the NPLE method usually
converges to the same solution, see Ref. [17].

4.2 Asymptotic analysis

We first define some notations of the network G': let
N, ={jel:(G");>1forVk<h} and G, is a N/, XN,
submatrix of G' for i€ 7, Yh e N and ¢ € 7. Then, we intro-
duce the assumptions required by the theorem.

Assumption 4.1. Let sup,_¢ |ao(s) +a,(s)| < 4.

Assumption 4.1 ensures that Eq. (1) allows a unique equi-
librium solution. This assumption is a sufficient assumption
for equilibrium uniqueness in Bayesian games, see Ref. [8].
We found it is also a useful assumption for equilibrium
uniqueness in our Markov games, so we still use it as a suffi-
cient assumption. Similar assumptions can also be found in
Ref. [7]. Under this assumption and previous assumptions, we
can further obtain the following lemma.

Lemma 4.1. Under Assumptions 2.1, 2.2, 2.3 and 4.1 in
Theorem 4.1, the games exist a unique pure strategy Markov
perfect equilibria.

As mentioned in Ref. [8], Lemma 4.1 is an important theor-
em for statistical inference. We need it to avoid the problem
of multiple equilibria. One can refer to Ref. [8] for more de-
tails.

Assumption 4.2. E(Z'Z!) and E(Z'Z") are full rank.

Assumption 4.3. The parameter 6, is the only solution to
the following equation

6 = argmax L(c, B0, W))
c€®

Assumption 4.2 is used for model identification. Similar
assumptions can be found in Refs. [7, 8]. As stated above and
in Ref. [8], assumption 4.3 is an essential assumption for our
theoretical results. Although it is easy to verify that 6, is a
solution of the above equation, we cannot prove that 6, is the
unique solution of the above equation. If the above equation
has multiple solutions, then each solution is a convergence
point of the NPLE method. Therefore, we need this assump-
tion to guarantee that the NPLE method convergence point is
unique. The NPLE method can still be used when the assump-
tion is not satisfied. As mentioned in Ref. [17], we can use
multiple NPLE initial points to verify whether the fixed point
is unique, if not, consider the point that maximizes the pseudo

-6

log-likelihood function among the multiple fixed points as the
solution of the NPLE method.

Assumption 4.4. The parameter space @ is compact and
the support Syc and Sy¢ is bounded.

Assumption 4.5. There exists a positive integer constant ¢,
such that

n
max E 8,<¢
iel 1T P /

j=

is always true.

Assumption 4.6. For any given & € N, the probability dis-
tribution of G, converges to a limiting distribution as n
tends to infinity for all 1€ 7 and i € 7, and if N, " N[, =0,
then G, and Gj,, are independent. Moreover, the payoff co-
variates X! are i.i.d. across players when the exogenous ran-
dom network at time ¢ is given.

Assumption 4.4 guarantees that our pseudo log-likelihood
function is uniformly bounded, since it ensures that our prob-
ability selection function is uniformly bounded and far from
zero, see Refs. [7, 8]. Assumption 4.5 aims to reduce the de-
pendencies between the various players, please refer to Ref.
[7] and the network decaying dependence condition (NDD
condition) mentioned therein. It is also true that this is the
case in some actual datasets. Assumption 4.6 is similar to that
in Refs. [7, 8]. With regard to the assumption of payoff cov-
ariates X; in assumption 4.6, we do not directly use the attrib-
ute variables of the players in the model (e.g., height, age,
gender, etc.). Similarly, as described in Ref. [8], Under cer-
tain conditions, we can slightly relax this assumption.

Assumption 4.7. For any two players i and j, the central
measure function §'; between them needs to satisfy
eC:keN

.9

85 =5(Giyy Gisr (G

q)?

N, D

where S(-,-,) is a bounded function and ¢ is a constant.

Assumption 4.7 is utilized to limit the dependence caused
by social influence. In our model, we still want to keep the
social influence setting in Ref. [8], but it will break some of
the dependencies that were reduced in Refs. [7, 8]. Thus we
need Assumption 4.7 to ensure that the dependencies in our
model are not so strong.

Theorem 4.1. Under Assumptions 2.1, 2.2, 2.3 3.1, 4.1,
42,43,44,45,4.6,4.7, and m < n, h=1Inn/(4Inc), then,

~ P
Oxpe — 0o

holds.
Theorem 4.1 guarantees the convergence property of the
NPLE estimator, but it still has extensible aspects. It has been
found that center metrics may not meet Assumption 4.7, we
can modify this type of center metric to fit our model and
avoid possible bias. Therefore, we make Assumption 4.8.
Assumption 4.8. For any two players i and j, the central
measure function(S',) between them needs to satisfy
Gf

(jmax(h.q))?

't t N t t
S ji S (G(i,max(h.q))’ {C’» * k € N(i.mmx(h,q)) U N(j,max(h,q))})’
where S(-,-,-) is a bounded function, ¢ is a constant and

. . ,
lim,_., S} =lim, . S".

Theorem 4.2. Under assumptions 2.1, 2.2, 2.3 3.1, 4.1, 4.2,
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43,4.4,4.5,4.6,4.8,and m < n, we let h =1Inn/(41Inc), then,

~ P

6 — 6,

NPLE

holds. Note that the / that we choose in this theorem is not
unique and we use S’y instead of S, to estimate the paramet-
ers.

5 Monte Carlo experiments

In this section, we evaluate the performance of our proposed
community identification algorithms for estimating homogen-
eity, and verify whether the NPLE estimation of peer pres-
sure conforms to theoretical results. We first elaborate on the
generation process of simulated data, and then present the
simulation results.

5.1 Experimental setup

For a dynamic homogeneous network, we consider time
m =2 and assume that the number of directed edges of each
node in the network has an upper bound, i.e., we set a minim-
um of 1 and a maximum of 10 directed edges for each node.
Similar to Ref. [16], we further consider 4 potential com-
munities for individual homogeneity parameters. The probab-
ility of having a directed edge between two nodes in the same
community is 0.75, while the probability of having a directed
edge between two nodes belonging to different communities
is 0.25. The simulation results of other choices of link prob-
abilities for the edges can be found in the Appendix. Further-
more, we generate four different groups of two-dimensional
random attribute covariates for estimating the homogeneity
parameter, that is, D,:(NQ2,1/4),N(2,1/4)),
D, : (N(Q2,1/4),N(=2,1/4)), Dy : (N(-2,1/4),N(2,1/4)),
D,:(N(-2,1/4),N(-2,1/4)), and set f(X.X;)=d(X.X),
where d(-,-) is Euclid distance.

Regarding social influence, we apply the KB centrality
measure in Ref. [8], which is defined as follows:

§i=2 2@
k=1 j=1
S,=8"=8.

It can be seen that using KB centrality as the true result in
the simulation will lead to deviation in the estimation proced-
ure, because it will violate the precondition of the theoretical
result. We make the following changes to the KB centrality to
conform to Theorem 4.2 for estimation.

Si= 313 (G, S, =S-S.,

k=1 j=1

where G, is a N[, X N|;,, submatrix of G fori € 7, h € N and

teT and N, ={jeT:(G"),;>1 for Yk <h}. It is simple to
verify that this modified KB centrality satisfies condition 2 of
Theorem 4.2.

For nodal covariates X, € R, we follow Ref. [7, 8] and let
X! =S!, the corresponding coefficient is set to be 8, =—1.
With regard to homogeneity parameters, we let
v, =(=2,-1,1,2). Then, we give each node a probability
1/n"* of community misidentification in each simulation to
verify our theoretical results. The reason why we do not use
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Fig. 1. Average community misclassification rate for Algorithm 1, which
is based on the average of 50 replications.

our algorithm is because of the computational cost and we
have difficulty in having enough time to perform simulations
with large samples. Finally, the estimation results are ob-
tained by simulating 100 replications.

5.2 Experimental results

We summarize the experimental results from the following
three aspects. First, we evaluate the performance of the two
proposed algorithms for estimating homogeneity parameters.
Second, we analyze the effect of the NPLE estimation meth-
od of peer pressure parameters from the perspective of mse

0028“ Algorithm 1
Algorithm 2
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Fig. 2. Average community misclassification rate for Algorithms 1 and 2,
which is based on the average of 50 replications.
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and sd of the estimated values, and compare the two cases of
whether there is error in the estimation of homogeneity para-
meters. At the same time, we give the sensitivity analysis of
the parameters. Finally, we compare the performance of our
model and method in dynamic networks and static networks.

We can see from Fig. | that the average community mis-
classification rate for 50 repetitions by using Algorithm 1 has
a significant decreasing trend as » increases. When the num-
ber of nodes n reaches 100, the community identification er-
ror of Algorithm 1 is able to reach within a desirable error
range. Because the time cost of running Algorithm 2 once is
equivalent to running Algorithm 1 »* times, we only compare
the two algorithms when the network size » is much smaller.
As shown in Fig. 2, when the network size n increases, the
community misclassification rate of Algorithm 2 has a signi-
ficant downward trend and even reaches 0 directly. Overall,
the accuracy of Algorithm 2 is better than that of Algorithm 1
in the simulations. Therefore, we utilize Algorithm 2 for ho-
mogeneity identification when the network size » is moderate,
and the accuracy of the community identification results is
exchanged by the computational cost. When the network size
n is large, Algorithm 1 can dramatically save computational
cost while obtaining sufficient accuracy for homogeneity es-
timation.

Table 1. Peer pressure estimation with homogeneity identification error.

In Table 1, as for peer pressure parameters (¢, d,,®,), it
can be found that with the increase of 7, the estimated value
(¢1, 0, ¢,) tends to approach the true value. In addition, when
compared with Table 2, one can see that when n is small, the
homogeneity identification error has a greater impact on the
estimation of the result, but as » increases, this impact gradu-
ally decreases to disappear.

Moreover, it can be found from Table 1 that both the stand-
ard deviation (sd) and the mean square error (mse) decreases
as n increases, and the speed of convergence to 0 is basically
consistent with n. However, compared with Table 2, When n
is not large enough, both the standard deviation and the mean
square error are slightly inferior to the results estimated with
the true homogeneity, which is still acceptable.

Finally, we compare the performance of our methodology
in dynamic networks and static networks. From Table 3, we
can see that although in a static network, with the increase in
the number of nodes #n, the estimation results still remain con-
vergent, but all the estimation results are still worse than
those in Table 2. Therefore, when the number of nodes is in-
sufficient, the expansion of the time dimension can ensure
that our estimation results are more accurate.

6 Empirical application: Teenage friends

Description of results B=-1 p1=1 ¢o=1 ¢1=1 yi(h=-2 Y@ =-1 Y3 =1 Y4 =2
mean —1.0121 1.0211 0.9936 1.0046 —2.0063 —1.0064 1.0378 2.0324
n=500 sd 0.3844 0.5127 0.7130 0.6358 0.5607 0.5797 0.6780 0.7941
mse 0.1464 0.2607 0.5033 0.4002 0.3113 0.3327 0.4566 0.6254
mean —1.0386 1.0209 0.9530 0.9677 —1.9985 —0.9785 1.0758 2.0837
n=1000 sd 0.2640 0.3237 0.4969 0.4245 0.4538 0.4053 0.5275 0.5704
mse 0.0705 0.1041 0.2466 0.1794 0.2039 0.1631 0.2812 0.3291
mean —1.0100 0.9544 0.9995 0.9184 —2.0177 —1.0049 1.0023 2.0096
n=1500 sd 0.1739 0.2954 0.2616 0.3312 0.3824 0.2242 0.3916 0.3620
mse 0.0300 0.0867 0.0678 0.1086 0.1449 0.0518 0.1518 0.1364

The first row of data represents the average of the predicted results, and the second row is the corresponding standard deviation, and the third row is mean

squared error.

Table 2. Peer pressure estimation without homogeneity identification error.

Description of results B=-1 pr=1 do=1 ¢1=1 yi(H)=-2 Y@ =-1 Y3 =1 Y4 =2
mean —1.0662 0.9904 0.9811 0.9019 —-2.0257 —0.9462 1.0923 2.1071
n=500 sd 0.3311 0.4596 0.7589 0.6382 0.5729 0.5127 0.6097 0.7203
mse 0.1129 0.2093 0.5705 0.4128 0.3257 0.2632 0.3766 0.5252
mean —0.9984 0.9895 0.9884 0.9589 -2.0294 -1.0123 1.0075 2.0187
n=1000 sd 0.2322 0.3035 0.4612 0.4475 0.3812 0.3229 0.4173 0.4791
mse 0.0534 0.0913 0.2107 0.1999 0.1448 0.1033 0.1724 0.2275
mean —1.0449 1.0200 0.9561 0.9710 —1.9413 —0.9538 1.0869 2.0915
n=1500 sd 0.1947 0.2463 0.4545 0.3837 0.3339 0.2932 0.4012 0.4564
mse 0.0395 0.0605 0.2064 0.1466 0.1138 0.0872 0.1669 0.2146

The first row of data represents the average of the predicted results, and the second row is the corresponding standard deviation, and the third row is mean

squared error.
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Table 3. Peer pressure estimation without homogeneity identification error in static network.
Description of results B=-1 o1 =1 ¢o=1 ¢1=1 yi(h=-2 y12)=-1 Y3 =1 Y4 =2
mean —-1.0142 0.9650 0.9821 0.9143 —2.1668 —1.0378 1.0212 2.0608
n=500 sd 0.4945 0.6656 1.0955 0.9485 0.8194 0.7533 0.8737 1.0097
mse 0.2423 0.4398 1.1885 0.8981 0.6925 0.5632 0.7562 1.0130
mean —1.0496 1.0126 0.9703 0.9306 -1.9781 —0.9654 1.0754 2.1021
n=1000 sd 0.3532 0.4359 0.7097 0.6817 0.5820 0.5615 0.6576 0.7797
mse 0.1260 0.1883 0.4995 0.4649 0.3358 0.3133 0.4338 0.6122
mean —1.0746 1.0175 0.8553 0.9018 -1.9112 -0.9108 1.1671 2.2148
n=1500 sd 0.3003 0.3659 0.6127 0.5475 0.5535 0.4602 0.5753 0.6518
mse 0.0949 0.1328 0.3925 0.3064 0.3111 0.2177 0.3556 0.4668

The first row of data represents the average of the predicted results, the second row is the corresponding standard deviation, and the third row is the mean

squared error.

Table 4. Statistical summary of the data.

Table 5. Estimation results.

Variable Min Max Mean
smoking 0 1 0.47
KB centrality 0 1.43 0.33
money -1 99.99 11.90
sex 0 1 0.57
age 12.8 14.3 13.32
smoke in home -1 1 -0.13
parents smoke -1 1 —-0.02
brothers and sisters smoke -1 1 0.74
num of friends 0 13 4.63

Note: In the table, sex: 0=girl, 1=boy; all family smoking: —1=yes 1=no.

and lifestyle study

6.1 Dataset description

The dataset is collected from the teenage friends and lifestyle
study”, which is designed to identify the influencing factors
of adolescent smoking behavior during their growth. There
are n = 129 teenagers without default attributes in the dataset
and it also combines students' friendship networks and longit-
udinal survey data on their social and economic characterist-
ics with time phases m = 3. Observed demographic character-
istics included age, sex, pocket money, sports, music prefer-
ences and family smoking. The dependent variable Y is the
smoking situation of students in the 3 phases. We record fre-
quent smoking as Y =1, and occasional smoking or non-
smoking as Y = 0. Table 4 represents the descriptive statistics
of the dataset.

6.2 Empirical results

We compare the performance of our GCPE model with a
benchmark model in Ref. [8], which we call the KB-CPE
model. The KB-CPE model does not consider homogeneity
pursuit and is designed for static networks, thus we use the
estimation results of the KB-CPE model based on the three

@ https://www.stats.ox.ac.uk/snijders/siena/Glasgow_data.htm
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Variable GCPE model KB-CPE model

KB centrality —-1.307 —2.768
Money - 0.004
Sex - -0.221
Age - —0.094
Smoke in home - -0.812
Parents smoke - 1.018
Brothers and sisters smoke - —0.559
Community 1 -3.155 -
Community2 -1.623 -
Community3 -1.999 -

®1 0.581 0.597
$o 3.966 4.398
1 9.326 -3.412
P11+ 9.907 —2.816

periods' data for comparison. The initial value of >° in the
NPLE method for both models is taken to be 2° = (0,---,0).

From Table 5, we can see that in our GCPE model, the
three peer pressure parameters satisfy 0 < ¢, <@, < ¢,. This
implies that the adolescents who choose to smoke can be
more affected by smoking friends than non-smoking friends,
and whether there is a difference in the social influence of ad-
olescents in social networks will not affect this conclusion. In
addition, the individuals with higher KB centrality have great-
er influence on individuals with lower KB centrality, and non-
smoking individuals with high KB centrality tend to avoid
smoking when they are influenced by their non-smoking
friends with low KB centrality.

For the KB-CPE model, ¢, >0 and ¢,>0 but ¢, <0,
which can be problematic since when S, >0 for all j€ F].
Thus, the KB-CPE model cannot give a reasonable explana-
tion for the estimation results of peer pressure parameters.

7 Conclusions

This study focuses on the estimation of peer pressure in dy-
namic homogeneous networks, which is extensively studied
in social network analysis. We developed a generalized con-
stant peer effects (GCPE) model based on the Markov perfect
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Table 6. Overall change in the probability of establishing connections between communities.

Description of results B=-1 p1=1 $o=1 $1=1 nH=-2 n@=-1 nB®=1 nW=2
mean —1.0662 1.0359 0.9494 0.8862 -1.914 —0.9346 1.1207 2.1141
Pin=0.6 sd 0.3581 0.4815 0.6219 0.6960 0.6108 0.5541 0.6104 0.6990
mse 0.1313 0.2308 0.3854 0.4925 0.3768 0.3082 0.3834 0.4967
mean —1.0546 1.0218 0.9682 0.9100 —1.9207 —0.9497 1.0980 2.0856
Pin=0.65 sd 0.3931 0.5307 0.6349 0.6605 0.6320 0.5852 0.6490 0.7419
mse 0.1560 0.2793 0.4000 0.4400 0.4018 0.3415 0.4266 0.5523
mean -1.0178 1.0000 0.9513 0.9401 -1.9788 —0.9903 1.0578 2.0440
P;y=0.7 sd 03773 04950 06759  0.6198 0.5705 0.5524 0.6202 0.7168
mse 0.1413 0.2426 0.4547 0.3831 0.3227 0.3022 0.3842 0.5106
mean —1.0121 1.0211 0.9936 1.0046 —2.0063 —1.0064 1.0378 2.0324
Pin=0.75 sd 0.3844 0.5127 0.7130 0.6358 0.5607 0.5797 0.6780 0.7941
mse 0.1464 0.2607 0.5033 0.4002 0.3113 0.3327 0.4566 0.6254
mean -1.0274 1.0232 1.0281 0.9985 —1.9805 —0.9958 1.0410 2.0283
Pi=0.8 sd 0.3613 0.5463 0.7509 0.5649 0.5510 0.5641 0.6808 0.7904
mse 0.1300 0.2960 0.5590 0.3160 0.3009 0.3151 0.4606 0.6193
mean —1.0091 0.9622 1.0916 1.0139 —2.0263 —1.0278 0.9845 1.9485
Pi,=0.85 sd 0.3913 0.5619 0.7502 0.5377 0.5805 0.6085 0.7539 0.8560
mse 0.1517 0.3140 0.5655 0.2864 0.3343 0.3673 0.5630 0.7280
mean —1.0369 1.0129 1.0359 1.0453 —1.9987 -0.9779 1.0484 2.0308
Pyp,=0.9 sd 0.3681 0.4898 0.8767 0.5839 0.5721 0.5599 0.7943 0.9219
mse 0.1355 0.2377 0.7623 0.3391 0.2340 0.3109 0.6269 0.8424

The first row of data represents the average of the predicted results, and the second row is the corresponding standard deviation, and the third row is mean

squared error. Pj, means the probability of establishing directed edges at nodes of the same community and P, means the probability of establishing

directed edges at nodes of different communities, where Poy = 1 — Pj,. Network size n = 400. Homogeneity exists for identification errors.

Table 7. Different community link probabilities.

Description of results B=-1 pr=1 do=1 ¢ =1 Y1) =-2 Y@ =-1 Y3 =1 Y4 =2
mean —0.9904 0.9583 0.9630 0.9222 —2.0339 —1.0596 1.0140 2.0494
n=500 sd 0.4742 0.7220 0.6022 0.7058 0.4392 0.4766 0.5805 0.6898
mse 0.2227 0.5179 0.3604 0.4992 0.1921 0.2284 0.3338 0.4735
mean —0.9570 0.9952 1.0645 1.0291 —2.0320 —1.0426 0.9375 1.9346
n=1000 sd 0.3359 0.4383 0.5460 0.4611 0.2979 0.3241 0.4872 0.5672
mse 0.1135 0.1893 0.2993 0.2113 0.0889 0.1058 0.2389 0.3228
mean —0.9642 0.9679 0.9679 1.0068 —2.0368 —1.0467 0.9911 1.9926
n=1500 sd 0.2883 0.3521 0.4112 0.4010 0.2749 0.2996 0.3734 0.4570
mse 0.0836 0.1237 0.1684 0.1593 0.0761 0.0910 0.1381 0.2068
The first row of data represents the average of the predicted results, and the second row is the corresponding standard deviation, and the third row is mean
075 025 035 0.15
squared error. The probability matrixP = 828 82(5) 823 8;2 for establishing links between communities. Note that in a real simulation, the
0.15 025 0.15 0.75

probability is not the above result; for example, p(c(1),c(1)) = P11 and pc(iy,c) = (1 - P11)

equilibrium, which can effectively avoid bias through homo-
geneity pursuit and can be applied to a wider range of net-
works. To estimate peer pressure in the GCPE model, we first
present two algorithms to estimate homogeneity parameters.
Then we introduce the nested pseudo-likelihood (NPLE)

-10

P2

—— . Homogeneity exists for identification errors.
Pio+Pi3+Piy

method and apply it to obtain consistent estimators of peer
pressure. We further represent the theoretical properties of the
NPLE estimators. Simulation evaluations show that our pro-
posed methodology can achieve desirable and effective res-
ults in terms of the community misclassification rate and
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Fig. 3. The standard deviation and mean square error of the estimated peer pressure parameter.
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parameter estimation error. We also illustrate the advantages
of our model in empirical analysis when compared with the
KB-CPE model.

Two interesting directions for future research are the plur-
ality of decisions made by gamers and the multiple choices of
homogeneous settings. In social networks, individuals do not
behave in only two categories; thus, it is a natural idea to ex-
pand the decision dimensions of the players in the game. Al-
though the homogeneity setting has been extensively studied
and we have succeeded in proving the consistency of the
NPLE estimators in the setting of homogeneity pursuit, the
consistent properties of the NPLE estimators under other set-
tings are also worth further study.
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LO.B)=~ 3" > EI(¥/InT (B 69 + (1= ¥) In(1 =T (¥, 6: 7)),

=1 =1

A, ={0€0:0=argmax_,L,(c, PO, W))},

£,0,%) = % > XE[(Y[InFj (B7,8:%) + (1= ¥)In(1 =T (9,8 %)),

=1 =1
A, ={0c®:0= argmax&@ﬁ"(c,‘B(é,W))}.
It can be seen from Ref. [8] that A, — 6, as n — co. Then, we need to complete the following two parts of the proof:

SUP,o|L, (6, ) — L,(6, )| = 0,

dy(A Byoe) > 0,
where d,, is the Hausdorff distance measure. According to Ref. [7], it is sufficient to prove that L,(c, B) — L.(c,B) 50.

~ 1 U " 1 m o n B
L B)=LeB) = > > (VI (W) = BB (W0 InB; (W30)) + = D > (1= ¥)In(1 =B (W'3))-

=1 =1 =1 =1

E(1-PrW50))In(1 =PrWio) =L +L+L+L+ L+ L+ 1+ +1;,

where
l = %ZZ(W (T 0) I (770),
L= }122(«1 = ¥) = (1 =B (W) In(1 - B; (W),
L= %Zm:an(%i*(W’;H)ln‘BZ*(W;c)—%:”(W’;G)ln‘Bi”(W’;c)),
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~

Iy ~ -
= Z Z((l =B (W50) In(1 =B (W' 0)) — (1= B (W'30)) In(1 - B (W'; 0))),
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~
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h=g ZZ(Eqsz"(w;mlnﬂs;"(w;c)—E%;*(W';f))lnﬂsi*(W;c)),
Ll

= = 7 B =B 0) In(1 =B (W) ~ (1= B (W:6) In1 =% (W'0))

=1 =l
We can obtain that [, + I, — 0, I, + Iy — 0 and min{$""(W';6), (1 — B (W*6))} > B,.
E[B;(W':6) InB;(W's0) = B (W':6) In B (W'1.0)] <
E|(9; (W':6) = B (W':0) In; (W's0)| + E[B] (W 6)(In B (W'10) = In B (W';.0))] <

— InPoE|(B; (W':60) — P (W' 0))| + %OE|($:*(W’;c)—‘B§”(W’;c))|.
By Assumption 3.1, we can obtain
Pr|(B: (W';0) — B (W5 0))| # |(By (W'30)— B (W:0))} >0, as n— oo.
Then,
E|(P! (W';6) - B (W;0)| >0, as n— oo.
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Therefore, I; + 1, 2% 0. Next we need to prove that I + [, 50.

o
E(= D" 3 (B (W 0) I (W'sc) ~ BB/ (W3 0) In R (W o)) =

=1 =1

% Zm: Z Cov (B! (W';0) InB/"(W'; ), B (W' 0) In B (W's ).

=1 ij=1
From Ref. [7], we can know that
Cov (B! (W';0) In B (W';.0), B4 (W) In B/ (W'; ) < (In B, )"

Then, we will count how many related players each player has. By condition 7, we can know if there does not exist
k € N, NN, then B (W';6) and B*(W';6) are independent. By condition 8, we can easily find that as n increases, the correla-
tion brought by S, becomes increasingly weaker. Therefore, by condition 6, we can determine that each player is associated with
atmost (1 +¢,+---+c}) < ¢, players.

Last, we have

RSN th 1. th 1. th 1. th 1. 2 _ i RAN th 1, th (N th ‘. th ‘.
E{;Eg(‘“ CH0) In B (W7 c) — B CO ) In B (W75 ) = - E;COV(SBI (W' 0) In B (W's ), B2 (W'30) In P! (W's 0)) <

S (1n%,)* - 0.
n

Therefore, I + I, 2 0 and it follows that supge(_)lf,,,(e, B)—L,(6,B)] 50.

According to Ref. [8], we can obtain dy(A,,8yp:) 50. Therefore, it is sufficient to prove dy(A,,A,) % 0. From the defini-
tions of A, and A,, we can find that under Assumption 3.1, Pr{A, # A,} = 0, as n — oo holds. Then, Pr{d,(A,,A,) — 0} — 1, as
n — oo holds. Thus we can obtain dy(A,,A,) — 0. So far, we have completed the proof of dy(A,,Bwes) 50. In summary,

~ P
Owpre — 6.
A2 Proof of Theorem 4.2

In addition to the symbols used in the proof of Theorem 4.1, we need to supplement the symbols:

m

L6.%) = %ZiE[(Y;lnnf (B'.6: W) + (1 - ¥)In(1 ~T7 (B',6: W)L,

=1 =1
and
A, ={0€®:0=argmax_,L (c, PO, W))},

where L (6,B) represents the equation after replacing ', with S

It is not difficult to verify that L, is a continuous function with respect to S",. then, from the proof in Ref. [8], we can deduce
that A, — 6, as n — co. Next, Remove equations /5 and /; in the proof of Theorem 4.1, the proofs are the same as Theorem 4.1.

Similarly, we will count how many related plays each play has. By condition 7 in Theorem 4.1, we know if there does not ex-
ist k€ N, NN, then B/ (W';6) and B”(W';6) are independent. By condition 1, the correlation S, is no longer a negligible
quantity, but under our adjustment, it will be a manageable quantity. From the original need to only consider the correlation of a
player with other players, we have changed to consider the correlation between players in a subnetwork and other players. There-
fore, by condition 6, we can determine that each player is associated with at most (1 +c¢,+---+¢})* < ¢;*** players. Therefore,

Is+ 1 N 0, which follows that sup(,e@lz,l(e,‘B) —L,(0,1)] 2 0. To sum up, 91'\,PLE 5 6.
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