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Schematical configuration of the magneto-dependent nonlinear dynamic model of isotropic MREs.

Public summary

m A magneto-dependent nonlinear viscoelastic behaviour is shown for magnetorheological elastomer (MRE).
m Although important, little theoretical attention is received to model it.

m A continuum mechanics theory based constitutive model is developed.

m The work promotes the application of MRE in vibration control area.
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Abstract: Isotropic magnetorheological elastomers (MREs) are smart materials fabricated by embedding magnetizable
particles randomly into a polymer matrix. Under a magnetic field, its modulus changes rapidly, reversibly, and continu-
ously, offering wide application potential in the vibration control area. Experimental observations show that there is a
strong frequency, strain amplitude, and magnetic dependence of the dynamic behavior of isotropic MRE. Although import-
ant for potential applications, the magnetic-dependent nonlinear dynamic behavior of isotropic MRE has received little the-
oretical attention. To accurately evaluate the dynamic performance of isotropic MRE and to guide the design of isotropic
MRE-based products, a new constitutive model based on continuum mechanics theory is developed to depict the magnetic-
dependent nonlinear dynamic behavior of isotropic MRE. Subsequently, the numerical implementation algorithm is de-
veloped, and the prediction ability of the model is examined. The model provides a deeper understanding of the underly-
ing mechanics of the magnetic-dependent nonlinear viscoelastic behavior of isotropic MRE. Furthermore, the model can
be utilized to predict the magnetomechanical coupling behavior of isotropic MRE and therefore serves as a useful plat-
form to promote the design and application of isotropic MRE-based devices.

Keywords: isotropic magnetorheological elastomer; frequency dependence; strain amplitude dependence; magnetic de-
pendence; nonlinear viscoelasticity; constitutive modeling

CLC number: 0345 Document code: A

1 Introduction particles and the matrix within the isotropic MRE under mag-
netic and mechanical loadings, a complex, magnetic-
dependent nonlinear dynamic behavior is exhibited.
Theoretically, magnetic dipole theory!”! was initially util-
ized to depict the modulus magnetic stiffening effect of MRE
under the quasistatic case. Next, the distribution of the particle
chain" and inelastic behavior of isotropic MRE were taken
into account through the Zener viscoelastic element!* ', fric-
tion element”, and fractional dashpot element"* "' based on
the infinitesimal strain assumption. Afterwards, based on the
phenomenological model of MRE, the dynamic performance
of MRE-based devices was modeled, e.g., Refs. [20, 21].
However, due to the soft nature of the matrix, magnetic dipole-
based theory cannot predict the dynamic behavior of MRE
under large deformation. A finite strain magnetoelastic inter-
action theory was developed by Dorfmann and Ogden®™. It is

Magnerheological elastomers (MREs) are smart materials that
are often fabricated by embedding magnetizable particles
into a polymer matrix. Under a magnetic field, due to the in-
teraction between particles and the matrix, magnetic tunabil-
ity of the modulus can be achieved for MRE. By utilizing the
magnetic tunability of the modulus, applications of MRE in
semiactive vibration isolators' !, smart tuned mass dampers!**!
and vibration absorbers® have been explored. Meanwhile,
since the magnetic permeability of MRE is larger than that of
rubber and air, a stress mismatch occurs and results in mag-
netostriction of MRE if a magnetic field is applied. Due to
magneto-induced deformation, a magnetically controlled sur-
face pattern”* using MRE is exploited.

To guide the design of MRE-based products, accurate char-
acterization and modeling of their dynamic behavior is

needed. Experimentally, a dynamic test of isotropic MRE
under harmonic cyclic loading shows that the modulus of
MRE increases with magnetic field and frequency but de-
creases with strain amplitude® . On the other hand, the stress
relaxation test of isotropic MRE shows that a longer time is
needed for it to reach the equilibrium state when a magnetic
field is applied""'. Therefore, due to the coupling between

0106-1

postulated that Helmholtz free energy exists for isotropic
MRE and that the derivative of the free energy with respect to
the deformation gradient and the magnetic field strength res-
ults in the corresponding stress and magnetic flux density, re-
spectively. Following the theoretical path of Dorfmann and
Ogden™, constitutive models that incorporate the magnetiza-
tion behavior and the contribution of Maxwell stress to the
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total stress within isotropic MRE were developed™ *. Sub-
sequently, the corresponding finite element implementation
platform was developed and used to predict the magnetostric-
tion-induced deformation of an isotropic MRE film bonded to
a nonmagnetic substrate™”. However, for the model de-
veloped”™**, the effect of the magnetic field is coupled to the
classical hyperelastic model in an additive form, and the mod-
ulus magnetic stiffening effect is only exhibited in directions
where the Maxwell stress is not zero. However, experimental
testing results showed that a modulus magnetic stiffening ef-
fect also existed in other directions. Therefore, the modulus
magnetic stiffening effect cannot be represented fully by the
model developed.

Currently, theoretical works have mainly focused on pre-
dicting the rate-independent behavior of isotropic MRE. As
an essential component of the mechanical behavior of MRE
and which is of great importance to the application of isotrop-
ic MRE in the vibration control area, the dynamic behavior of
MRE has received little attention. Constitutive models to de-
pict the hysteresis behavior of isotropic MRE mainly focus on
the magnetic-dependent viscoelastic behavior based on an in-
finitesimal strain assumption by adding a dashpot or vis-
coelastic Zener model"* ). Although a finite strain-based
Zener viscoelastic element™ " was introduced to account for
the viscoelastic behavior of the polymer matrix, the viscosity
of the Zener viscoelastic element was assumed to be a con-
stant value, irrespective of the magnetic field and strain amp-
litude. However, as observed experimentally” ', the vis-
coelastic behavior of isotropic MRE is highly magnetic and
strain amplitude dependent. Therefore, there is a certain gap
between the experimental testing and constitutive modeling of
isotropic MRE.

To evaluate the dynamic performance of isotropic MRE
under different frequencies, strain amplitudes, and magnetic
fields and to guide the design of MRE-based devices, a new
constitutive model of MRE that incorporates magnetic, fre-
quency, and amplitude dependency is developed based on ex-
perimental testing and theoretical analysis. The major nov-
elty of this study is to develop a new constitutive model based
on finite strain theory that thoroughly incorporates the modu-
lus magnetic stiffening effect and the nonlinear viscoelasti-
city of isotropic MRE. This work can provide guidance for
the accurate prediction of the magnetomechanical coupling
behavior of isotropic MRE and promote the design and pos-
sible applications of isotropic MRE-based devices.

The remainder of this paper is organized as follows. In Sec-
tion 2, quasistatic, magnetization, and harmonic cyclic dy-
namic tests of MRE are conducted. In Section 3, the
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Fig. 1. Schematic configuration for the fabrication of isotropic MRE.
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continuum mechanics framework is introduced. Afterwards,
the specific constitutive equations are proposed in Section 4.
In Section 5, the experimental and simulation results are com-
pared; furthermore, the model prediction results are presen-
ted. Finally, the conclusion is presented in Section 6.

2 Experimental results

Carbonyl iron particles (CIPs, type CN, BASF, Germany dia-
meter 7 um on average), polydimethylsiloxane (PDMS), and
curing agent are used. The mass ratio for carbonyl iron
particles, PDMS, and curing agent is 75 : 25 I 1. The specif-
ic fabrication process is as follows. First, PDMS, curing
agent, and carbonyl iron particles are mixed for 5 min. After-
wards, the air bubbles within the mixture were extracted
using a vacuum chamber for half an hour. Subsequently, the
mixture was poured into a rectangular mold and vulcanized at
100 °C for half an hour. During curing, no magnetic field is
applied. Therefore, the carbonyl particles are assumed to be
homogenized and distributed within the matrix, and the fab-
ricated MRE is isotropic. The schematic configuration corres-
ponding to the fabrication process of isotropic MRE is shown
in Fig. 1. For more details regarding the fabrication of iso-
tropic MRE, the readers are referred to Ref. [31].

After fabrication, a quasistatic test of the isotropic MRE
with a strain rate of 3x 107 s and strain amplitude of 15%
under magnetic fields with magnitudes of 0, 0.2 T, and 0.4 T
are conducted on a dynamic mechanical analyzer. For the dy-
namic test, 0.1 Hz, 1 Hz, and 10 Hz are considered, three sets
of strain amplitudes of 5%, 10%, and 15% and two sets of
magnetic fields of 0 and 0.4 T are applied. An Electroforce
3200-type dynamic mechanical analyzer (DMA) from TA in-
struments with the function of applying a magnetic field, as
shown in Fig. 2, is used to test the magnetic-dependent mech-
anical behavior of isotropic MRE. Before testing, the relation
between the magnetic flux density and applied current was
calibrated through a Tesla meter. Each combination of fre-
quency, strain amplitude, and magnetic field is tested three
times, and the mean value is taken as the final test data.

To characterize the magnetization performance of MRE, a
hysteresis measurement of soft and hard magnetic materials
(HyMDC Metis, Leuven, Belgium) was utilized. After test-
ing, the measurement results are shown in Figs. 3-5.

The results in Fig. 3 show that a pronounced modulus mag-
netic stiffening effect is exhibited for isotropic MRE. Further-
more, the quasistatic behavior of isotropic MRE is nonlinear.
Specifically, the slope of the stress—strain curve decreases first,
then reaches a linear region, and afterwards, there is
another increase in the slope. From the perspective of
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Fig. 2. Dynamic mechanical analyzer with function of applying magnetic
field. (a) Photograph of the dynamic mechanical analyzer. (b) Schematic
configuration of the dynamic mechanical analyzer.
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Fig. 3. Quasistatic stress—strain test results of isotropic MRE under differ-
ent magnetic fields and the magnetization strength-magnetic field intens-
ity curve of isotropic MRE. The lines and dots are experimental and sim-
ulation results, respectively.

modeling, a hyperelastic model that is able to depict the non-
linear stress—strain curve is needed. Regarding the magnetiza-
tion curve, it is found that the magnetization strength in-
creases with increasing magnetic field intensity until magnet-
ic saturation is reached for isotropic MRE.

Regarding the dynamic hysteresis stress —strain curve, as
shown in Figs. 4 and 5, the peak stress increases with increas-
ing magnetic field, frequency, and strain amplitudes. To
quantitatively evaluate the influence of the strain amplitude
on the dynamic behavior of isotropic MRE, the Fourier
transform-based method is applied to extract the equivalent
shear modulus and loss factor of isotropic MRE in the fre-
quency domain. Mathematically, the equivalent shear modu-
lus and loss factor of the MRE are reached through

G=G+jG =1, (1)
Y

IG| = V(G +(G"), 2

and

n= g 3)
where G*, G', and G" denote the complex, storage, and loss
moduli, respectively. 7 and ¥ are the Fourier transforms of
the shear stress and shear strain in the frequency domain. |G*|
is the equivalent shear modulus, and 7 is the equivalent loss
factor. After applying Eqgs. (1)—(3), the equivalent storage and
loss modulus of the isotropic MRE is shown in Fig. 6.
Clearly, the equivalent modulus and the loss factor of the
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isotropic MRE decrease with increasing strain amplitude. Mi-
croscopically, this phenomenon is closely related to the
deformation-enhanced shear thinning of the polymer. From a
constitutive modeling perspective, a strain amplitude and
magnetic field process-dependent nonlinear viscoelastic
model is needed to depict the nonlinear and magnetic-
dependent dynamic behavior of isotropic MRE.

3 Continuum mechanics basis

3.1 Kinematics and magnetic equations

Due to the soft nature and large deformation that isotropic
MRE may encounter during application, continuum mechan-
ics theory should be applied to depict the magnetomechanical
coupling behavior of isotropic MRE. As shown in Fig. 7, the
initial configuration of the isotropic MRE where no loading is
applied is denoted as Q.. After loading, the isotropic
MRE moves from Q,ence 10 Quuren- The deformation gradient
that connects Q. erence ANA Q. yrene 1S

F= M, 4)
ox
where y is the motion of a specific material point with co-
ordinates X and x in the reference and current configuration,
respectively. The corresponding right Cauchy—Green tensor is
C = F'F, where superscript T denotes the transpose of the
matrix. To depict the viscoelastic behavior of isotropic MRE,
following the theoretical path of finite strain viscoela-
sticity™", the deformation gradient is further multiplicat-
ively decomposed into a viscous (F*) and an elastic part (F°)
as F = F°F". The corresponding right Cauchy—Green tensors
are C° = (F°)'Fc and C* = (F")"F".

Furthermore, as shown in Fig. 7, the magnetic flux density
and magnetic field intensity in Qe are By and Hy.
According to the magnetoelastic interaction theory by Dorf-
mann and Ogden™, the equivalent interactions in Q.. are B
and H with

B, =JF'B, 5)

H.=F'H. (6)

According to Ref. [22], the boundary conditions satisfied for
B and H are

n-[B] =0, (7

nx[H] =0, (8)

where [()]] = ()ousice — (Dwre denotes the difference between
the outside surroundings and MRE. n is the normal direction
at the MRE and surrounding air interface along the applied
magnetic flux density direction. In vacuum, B and H are con-
nected by B = u,H, where y, =1.256x10°T-m-A"" is the
magnetic permeability in vacuum. Furthermore, S in Fig. 6
denotes the second Piola—Kirchhoff stress in the reference
configuration, and it is connected to the Cauchy stress by
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Fig. 4. Dynamic hysteresis stress—strain of isotropic MRE under different frequencies and strain amplitudes. The magnetic field is 0 T. The lines and dots
are the experimental and simulation results using the modified Eyring viscoelastic model, respectively.
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Fig. 5. Dynamic hysteresis stress—strain of isotropic MRE under different frequencies and strain amplitudes. The magnetic field is 0.4 T. The lines and
dots are the experimental and simulation results using the modified Eyring viscoelastic model, respectively.
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Fig. 7. Illustration of the kinematic frame of isotropic MRE.

o =J'FSF", 9)

with J = det(F).
3.2 Thermodynamic framework

In this work, no temperature change is considered. Therefore,
an isotropic MRE is assumed under isothermal conditions.
Temperature has a significant effect on the mechanical dy-
namic behavior of polymer-based materials. The coupling of
the temperature-dependent magnetomechanical behavior of
isotropic MRE may be taken into account in the current
model through the time—temperature equivalence principle”
or the Williams—Landau—Ferry function””, which will be one
of the future research directions following this work. Under
isothermal conditions, it is postulated that a Helmholtz free
energy @ exists within the MRE and is a function of C and
H,;. To depict the magnetization behavior, the modulus mag-
netic stiffening effect, the viscoelastic behavior along with the
contribution of the Maxwell stress on the total stress, @ is de-
coupled into three parts as:

& (C,Hy) = D™ (C,Hy) + D™ (C°,Hy) + D" (C,Hy), (10)

where @™, @™, and @™ are the magnetohyperelastic, mag-
netoviscoelastic, and pure magnetic free energy parts, respect-
ively. According to Ref. [30], the Clausius—Planck inequality
of thermodynamics that must be satisfied is

. 1. .
—@D—HR-BR+§S:C>O, (11)

where the dot between two vectors represents the scalar
product operator, two dots are the second-order tensor con-
traction operator and the superscript dot represents the materi-
al time derivative. Inserting Eq. (11) into Eq. (10) and keep-
ing in mind that (C*, Hy) instead of (C, Hy) determines @™,
the following can be obtained:
op™ o OP™ L OD"

ac T e 56 )

(12)

S=85" 484§ = 2(

6 (pmc 3 djmvc 8 djm

and a dissipation equation
aémve B .
D = (F*) SC (F) T [(F)"(F')"C+C(F')"'F']>0.
(14)
. B a mve N .
Due to the isotropy of (F) ‘W(F‘) T and by using
F = F°F", Eq. (14) can be simplified to

oD = =
Dy =2F F——(FYF":C(FY ' F >0, (I9)

oCe
tion equation can be further simplified as

By inserting T = 2F*

(F°)" into Eq. (15), the dissipa-

1
D =1me(b)™" EFQ(CV)*‘(FE)T >0, (16)
where b*=F'F"" is the left viscous Cauchy—Green strain
tensor. By defining £,b¢ = —F¢(C")"'(F*)", the well-known
Clausius—Planck thermodynamic inequality for the finite
strain viscoelasticity is obtained

1
B 3 £.b°-(b5)" = 0. (17)

To fulfil the condition in Eq. (17), the evolution law for
£.be-(b°)!" is set to be

£ b (b = -3V (18)

where dev denotes the deviatoric operator with
dev(-) = ()= 1/3xtr(-), with tr being the trace operator of
second-order tensors.

4 Constitutive equations and numerical
implementation method

After introducing the continuum mechanics frame and mag-
netic equations, the specific constitutive equations to depict
the modulus magnetic stiffening effect, the magnetization be-
havior, and the magnetic-dependent viscoelastic behavior of
isotropic MRE will be represented in this section. First, a new
type of multiplicatively coupled magneto-hyperelastic free
energy function is proposed. Afterwards, a nonlinear vis-
coelastic constitutive model to depict the rate, magnetic, and
strain amplitude dependence of isotropic MRE is developed.
Finally, the numerical implementation algorithm correspond-
ing to the nonlinear viscoelastic constitutive equations will be
introduced.

4.1 Magnetization and magneto-hyperelastic constitutive
model

To depict the magnetization behavior, as shown in Fig. 3, the
representation theory of tensors is utilized. According to
Refs. [29, 30], the tensor invariant

L=I1-H®H=C"': H;® Hy, (19)

is used to depict the magnetization behavior of isotropic

By=B*+B™+B'= ~SH.  BH. " 3. (13) MRE. Physically, it is the square of the norm of the magnetic
R K K field intensity in the current configuration. To depict the
0106-5 DOI: 10.52396/JUSTC-2022-0173
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magnetic saturation behavior of the magnetic hysteresis
curve, as shown in Fig. 3, the pure magnetic free energy @™
is set to be

@™ = —mym, In [cosh(ﬂ)] - @JIS, (20)

m, 2

where the first term in @™ is used to depict the magnetization
behavior of isotropic MRE and the second term is used to de-
pict the contribution of Maxwell stress on the total stress. The
constants m, and m, are material parameters that need to be
determined through experimental testing. Specifically, by the
results in Eqgs. (12) and (13),

L\ 1
Sm = [motanh( \/_)— +u,J |C"Hy @ C™' Hy —&JISC",
m, | T, 2
(21)
and
VI\ 1
B = mytanh - C'H, JC'Hy. 22
R = Motan (m, N7 R+ Ho R (22)

By pushing forward the result in Egs. (21) and (22) into the
current configuration, it is obtained that

\/I_s 1 Ho
m = h - |—|H®H H®H-—(H -H)I|,
o [motan (m] T ® +[,uo ® 2( ) ]
(23)
and
VE\ 1

m _ -1 - N 24
B [J motanh( - \/I_S+,u0 H, (24)

where I is the second-order unit tensor. By observing the res-
ult in Eq. (23), an additional term along the direction of
H ® H contributes to the total stress in addition to the classic-

al Maxwell stress tensor [/JOH QH - ’% (H -H)I]. However,

it should be noted that the modulus magnetic stiffening effect
of isotropic MRE cannot be represented thoroughly merely
through Eq. (20). The underlying reason is that the modulus
magnetic stiffening effect only works in directions along
HQ® H. However, as shown in Fig. 3, a pronounced modulus
magnetic stiffening effect was also exhibited in other direc-
tions. Therefore, an additional magnetomechanical coupled
free energy term is needed to depict the modulus magnetic
stiffening effect of isotropic MRE thoroughly. According to
Refs. [22, 23], an additional tensor invariant

I=1I:H,®H, (25)

is used. It allows the magnetic field coupling to the original
hyperelastic free energy in a multiplicative way by

@me —

1+ gmstanh( VL )] P, (26)

se

where @ is the classical hyperelastic free energy for the rub-
ber matrial. g,. and M, are material parameters that reflect

0106-6

the enhancement effect of the applied magnetic field on @*.
The experimental results show that the stress increases with
increasing magnetic field until magnetic saturation is reached.
Therefore, the hyperbolic tangent function is used in Eq. (26)
to depict this trend. As shown in Fig. 3, there is a stress stiff-
ening effect at a large strain amplitude (10%—15%). There-
fore, the Yeoh hyperelastic model®” uses this effect. Sub-
sequently, Eq. (26) is shown in an explicit way as

D™ =p, [1 +gmetanh( \/E)]
[t =3)+ a1, - 3 d(l, - . @)

where I, =1:C is the first principal scalar tensor invariant
for C and p, is the classical shear modulus. Next, the corres-
ponding Cauchy stress and the magnetic flux density are

‘”—4)] [1 +2d, (I, —3) + 3d5(1, — 3)2] b,

o™ =, [1 + gmctanh(
28)

and

Eme 1
Bme — l’tLgmL tanhz( \/_4) _ 1:| .
Msie \/1—4 MSJ

(1, =3)+dx(I, = 3)" +dy(I, - 3)'|bH, (29)

where b = FF" is the left Cauchy—Green strain tensor.
4.2 Magneto-viscoelastic constitutive model

Following the same path for the magneto-hyperelastic free en-
ergy term, the free energy for the magneto-viscoelastic part is
expressed as

D™ =, [1 + gmvetanh( VL, )] .
(-3 4d@ -3 +d@ -3  (30)

where I =tr(C*), u,. is the classical shear modulus for the
viscoelastic element, and g,.. and M, . are material paramet-
ers that reflect the enhancement effect of the applied magnet-

ic field on @*. Afterward, inserting the result in Eq. (30) into
6¢mve .
™ = 2F‘e%(Fe)T results in

1
™ =24, [1 + g.metanh( VI, )]

s ve

[1+2d, (I° —3) +3d,(I: = 3)’1b". 31

Inserting Eq. (31) into Eq. (18), an alternative form for
£.,b°-(b°)" to satisfy the thermodynamic inequality is
obtained

£.b°-(b°)" = ~Ymedev (b°), (32)

where 7,.. is the effective creep rate for the viscoelastic ele-
ment. As observed in Fig. 6, the equivalent dynamic modulus
of the isotropic MRE decreases with increasing magnetic
field. Physically, this phenomenon is closely related to the
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deformation-enhanced shear thinning of polymers®™. To de-
pict this trend and follow the path of the classical Eyring vis-
coelastic model™, y,,. is assumed to be strain dependent as

. ) Auclivalion ) ||deV (bt)” -1
e = h ) 33
T 7°[||dev(be>||s“‘ ( prem )] (33)

where 7, isthe creep rate when the strain amplitude ap-
proaches zero. A*™*" is the material parameter representing
the activation strain, and ||-|| is the Hilbert-Schmidt of second-
order tensors. Clearly, as the strain amplitude increases, V.
decreases in a smooth way until it approaches zero. Macro-
scopically, as ¥, decreases with respect to the strain amp-
litude, the equivalent modulus of the viscoelastic element de-
creases. Therefore, the strain amplitude-dependent creep rate
along with Eq. (25) to Eq. (27) can depict the magnetic, strain
amplitude and rate-dependent nonlinear dynamic behavior of
isotropic MRE.

4.3 Numerical implementation algorithm for the
magneto-viscoelastic constitutive model

To ease the reader’s understanding, the constitutive equations
for the magneto-viscoelastic model are listed below:

=l

s_ve

@mve - /Jve

1+ gmvetanh(

[(IT - 3) +dz(IT - 3)2 + d3(IT - 3)3],

e — zﬂve

1+ gmvetanh(

o)l

s_ve

(34

[1+2d, (I — 3) + 3d,(I; - 3)° 18,
Jctivation sinh ( “deV (be)” ):|_]
lldev (bo)I| ’

Vire = 70[

ﬂaclivmlion

£.b°-(b°)" = —Ypedev (b°).

The constitutive equations listed in Eq. (34) are highly non-
linear. To solve Eq. (34), the operator split methodology,
which is widely utilized in finite strain inelasticity, is applied.
From the perspective of numerical implementation, there are
three main steps. Taking the time interval (z,, t,,,) asan ex-
ample. First, for the elastic trail step, it is assumed that there
is no updating of C* from ¢, to t,,,. Therefore, trial b° and the
corresponding y,.. and £.b°-(b°)" can be determined.
Second, for the residual check step, the residual correspond-
ing to £,b°-(b°)" is checked. Finally, for the inelastic cor-
rector step, if the residual does not meet the threshold require-
ment, C* will be updated by using the Newton-Rapson meth-
od. Since the whole process is highly mathematically in-
volved, the detailed derivation is not shown. To keep the
manuscript compact, only the numerical implementation
flowchart is shown. For more details regarding the operator
split method, the readers are referred to Ref. [34].

( 1) Elastic trial:

0106-7

bfrial = (F)n+l (bv);](F):H’

/‘iaclivalion . deV | b ::rial B
sinh| —— ’
Hdev (be /lummtmn

trial
b ]be

’)./mre = ’)./(J

trial trial ®

b® = expm [—2At’j/m,edev
[()2m,| = eig (@) 26 =log|(1)2],

[(2)m,] = eig(be,)» 26, =log[(1.)].

_ deV Hbleria] ||

r=e+——o
Yinre

At— efrial'

(35)

where eig denotes the matrix eigen decomposition, and
(/le)j, n, are the eigenvalue and eigenvectors, respectively.
(II') Residual check: if r < tol, where tol is the threshold,
then (C"),,, = (C"),. Else go to step III.
(IIT) Inelastic correction:

€ =€ — K™r,

(1), = exp(2€),

= %
[dev (5)], = [w)j - %17],

sinh(”dev <be)||)]‘
”deV (be)” activation ’

r=e€+y,.[dev(d)]At-€,,.

(36)

/'iaclivmlion

’)./mre = 7’0[

where K™ =0r/0e. Updating e, until the requirement
r < tol is met.
(IV) Export output:

3
b =) (A)n,en, 37)

a=1

and
C' =(F)., (b)'(F),.,. (38)

For readers to understand the numerical implementation
method, a flow chart corresponding to Eq. (34) to Eq. (38) is
shown in Fig. 8.

5 Parameter identification and model
prediction results

In this section, the boundary problem solution corresponding
to the simple shear quasistatic and dynamic tests of isotropic
MRE, as shown in Figs. 3 and 5, will be derived. Afterwards,
the material parameters corresponding to the constitutive
equations in Egs. (20), (27), and (34) will be identified. Sub-
sequently, simulation results and experimental test results will
be compared. Finally, two model prediction results are shown.

5.1 Boundary value problem solution and parameter
identification

An illustration of the simple shear test setting with an applied

DOI: 10.52396/JUSTC-2022-0173
JUSTC, 2024, 54(1): 0106



UST Magnetic-dependent nonlinear dynamic model of isotropic magnetorheological elastomers

Wang et al.
[ Input: (F),4q and (bV71), ]
Elastic trial:
bfrial = (F)n+1(bV71)n(F)Z+1
; _ )activation sinh devllbtnal -1
mre =0 [aev(be ) Aactivation
Update: Calculate:
€ =€ — K™l b® = expm[—2Atyimredev]| bt 11bErial
2°)Z = exp(2€g i
) = exp2ed) (K% Mol = eigBia): 2651010 = ogl K]
2
[dev(®9la = [ A= Z“e) ] [(29)2,n,] = eig(b®), 2¢§ = log[(2)2]
. Aactlvatmn "dev(be)” _ e At d be ) . _ e )
Ymre = Yo ||de (be)” h(lactlvanon)] rEet evll tnal”/ymre Etrial
No Check:
||7]| < tol
Yes
Output:
3
b= (%m, ®ng
= (F)Iﬂ(be)_l(F)nﬂ
Fig. 8. Flow chart corresponding to the numerical algorithm from Egs. (34) to (38).
T
magnetic field is shown in Fig. 9. Since carbonyl iron H, . = [ H 0 0 ] ) (40)

particles are assumed to be randomly distributed within the
polymer matrix, isotropic MRE is viewed as a homogenized
material. The deformation gradient corresponding to the
simple shear test is

1 00
0 0 1

where vy is the shear strain amplitude. The magnetic field ap-
plied is

y

)

I Deformation direction

=y Magnetic field direction

Yt
\!_____- -

> X

Fig. 9. Illustration of the simple shear testing setting with an applied
magnetic field for isotropic MRE.
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where variables with a superscript + represent the value with-
in surrounding air. The normal direction along the magnetic
field at the MRE-air interface is

Huw=[1 0 0]. (41)
The results in Egs. (6) to (8) result in
T
Hye=| H 0 0], (42)
T
Byre =[ wH" B, B, ] ’ (43)

where variables with subscripts denote values within the
MRE. Inserting Egs. (39) and (42) into Egs. (23), (24), (28),
and (29) result in

H
o =24, [1 + gmetanh(jl/[—ll) [y+2d,y’ +3dyy’],  (44)

_me

and

H eSme
Bll\dRE:[ ( il )_I]M g|H [’ +dyy* +dsy°| H,+
sme s_me 1

[mota h(' ')#WU]HI, (45)

where B, is the magnetic flux density within the isotropic
MRE along the x-direction. Since the magnetic flux density
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obtained through the free energy function and Eq. (6) is the
same, the equation must be satisfied for H, is

|H,| He8me
H* =|tanh’ -1
Ho [an (M M., |H]

s_me

[V +dyy* +dyy*| H, +

|H,|\ 1

[motanh(—) — 4y

H,. 46
m, ) |H,| ‘ (46)

H* is a prior known value. Numerically, the solution of H,
is solved using the fsolve function in MATLAB® (MATLAB
Release 2015b, The MathWorks, Inc., Natick, Massachusetts,
United States).

Identifying the material parameters to depict the mag-
netomechanical performance of isotropic MRE. The nonlin-
ear least square method with function lsqnonlin in MATLAB®
(MATLAB Release 2015b, The MathWorks, Inc., Natick,
Massachusetts, United States) is utilized to minimize the ob-
jective function (obyj):

Ob.] = \/(yrea] - yeslimale) : Conj (yreal - yeslima[e) ’ (47)

where y,., and Y.ume are the tested and predicted results, re-
spectively, and conj represents the conjugate operator.

First, the magnetization curve shown in Fig. 3 and Eq. (24)
is utilized to obtain parameters m, and m,. After obtaining m,
and m,, the magnetic independent material parameters y., d,,
and d; are obtained through the quasistatic stress—strain res-
ult at 0 T and Eq. (44) with g, =0. Next, magnetic-
dependent material parameters g,. and M, ,. are identified
through the quasistatic stress—strain results at 0.2 T and 0.4 T
and Eq. (44). The identified material parameters are listed in
Table 1. The comparison between the measurement and simu-
lation results is shown in Fig. 3. Clearly, the proposed multi-
plicatively formed magneto-hyperelealstic free energy in Eq.
(27) along with the pure magnetization free energy as shown
in Eq. (20) can depict the magnetization and modulus magnet-
ic stiffening effect of isotropic MRE accurately.

After obtaining the magnetization and quasistatic related
material parameters, three sets of modified Eyring viscoelast-
ic elements, as shown in Eq. (34), are utilized to simulate the
dynamic behavior of isotropic MRE. First, magnetic

independent material parameters y,., ¥,, and A" are iden-
tified using the dynamic hysteresis stress—strain data at 0 T
under 0.1 Hz, 1 Hz, and 10 Hz. Afterwards, magnetic-
dependent material parameters g,. and M, . are identified
using the dynamic hysteresis stress—strain data at 0.2 T and
0.4 T under 0.1 Hz, 1 Hz, and 10 Hz and the nonlinear vis-
coelastic model in Eq. (34). The specific values of the identi-
fied material parameters are shown in Table 2. The comparis-
on between the experimental and simulation results is shown
in Figs. 4 to 5. Clearly, the proposed magnetic field-, strain
amplitude-, and frequency-dependent finite strain viscoelast-
ic model can depict the dynamic behavior of isotropic MRE
with accuracy. To demonstrate the advantage of the model de-
veloped in this paper, four sets of classical Maxwell vis-
coelastic elements with magnetic dependence, which are com-
monly used for the current constitutive modeling study of iso-
tropic MRE 272 were utilized to depict the hysteresis
stress—strain results. Mathematically, the modified Eyring vis-
coelastic model degraded into the classical Maxwell vis-
coelastic model without strain dependence when A*™* in
Eq. (34) approaches infinity. The comparison result is shown
in Figs. 10 and 11 with the identified material parameters, R-
squared and mean absolute percentage error shown in Table
2. Obviously, the fitting effect of the classical Maxwell vis-
coelastic element to depict the magnetic nonlinear viscoelast-
ic behavior of isotropic MRE is not good even when one
more material parameter is used. Specifically, the details of
the stress —strain variation cannot be well described by the
classical Maxwell viscoelastic element, although the maxim-
um magnitude in the stress strain curve can be depicted. The
underlying reason is that the classical viscoelastic model can
only depict the rate dependency and is unable to replicate the
strain amplitude-dependent dynamic behavior of isotropic
MRE.

5.2 Model prediction

To further illustrate the effect of the strain rate, strain amp-
litude and magnetic field on the dynamic performance of the
material. Two sets of model predictions are conducted. For
the first set, isotropic MRE are loaded with different strain

Table 1. Magneto-hyperelastic parameter identification result and R-squared/mean absolute percentage error (MAPE).

Type of material parameters

Values

R-squared and MAPE

Magnetization

Magneto-hyperelastic

my=0.622T, m; =2.2826x10° A-m™~!
He = 1.993%10° Pa, dy = —4.195, d3 = 1.656 X 102, M me =8.370x 10* A-m™!, gme =0.125

0.9990/5.374%
0.997/8.241%

Table 2. Magneto-dynamic parameter identification result and R-squared/mean absolute percentage error (MAPE).

Type of R-squared and
model Values MAPE

Dynamic 11 =3.313x10° Pa, yo; = 1.329 57!, 4¢tVaon = 9 5775 1073, gnyer =2.538x 10",

modified - 7, o) =9.378x 10° A-m™", ez = 6.632 10* Pa, Jop = 2.971x 107 57", 540" = 2,489 x 1073, e = 0.154, 0.995/12.455%
Erying My 2 =9.585x 108 A-m™!, 113 = 2.196 x 10* Pa, 3 = 6.603x 107# 571, pactivation = 8 875 10%, gpe3 = 3.867x 10",
model /" i =7.671x106 A-m"!

Classical 1y = 1.093x 107 Pa, o1 =4.273x 1072 571, gmyer = 1112101, M, ye1 =3.371x10° A-m™!, p1ye2 = 6.632x 10* Pa,

Maxwell 5, =2.508x 107" 571, gmyer = 1206, My ye2 = 9.913x 108 A-m™", rye3 = 3.287x 10° Pa, o3 =2.721x 107 57!, 0.953/60.874%

viscoelastic ¢ . — 4264 x 10", M ye3 =6.910x 105 A-m™!, pryeq = 2418 X 10° Pa, 04 = 4.378x 10" 5!, gmyes = 3.307x 10!,

model 7, =4.029%10° A-m™"!

0106-9

DOI: 10.52396/JUSTC-2022-0173
JUSTC, 2024, 54(1): 0106



Z]srg*

Magnetic-dependent nonlinear dynamic model of isotropic magnetorheological elastomers

Wang et al.

15X 10° 5% strain 0 T 10% strain 0 T
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° 0.1 Hz Sim ° 0.1 Hz Sim
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1= 1 Hz Sim = 1 Hz Sim
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Fig. 10. Comparison between experimental (Exp) and simulation (Sim) stress—strain hysteresis results by the classical Maxwell viscoelastic model for
isotropic MRE at zero magnetic field with different frequencies and strain amplitude. The lines and dots are experimental and simulation results,

respectively.
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Fig. 11. Comparison between experimental (Exp) and simulation (Sim) stress—strain hysteresis results by the classical Maxwell viscoelastic model for
isotropic MRE at 0.4 T magnetic field with different frequencies and strain amplitude.The lines and dots are experimental and simulation results,

respectively.

rates (0.0004, 0.02, 0.1, 0.4, 2, and 10s™"). The strain amp-
litude is fixed to 0.1, and two kinds of magnetic fields, 0 and
0.4 T, are considered. The time versus stress results are shown in
Fig. 12. Obviously, a larger peak stress is exhibited if a faster

strain loading rate is applied. Furthermore, it can be found
that the peak stress increases with increasing magnetic field,
which again verifies the validity of the model to replicate the
modulus magnetic stiffening effect.

4
g X 10
=0T 10 s~ =0.4T 105!
—0T 25! —0.4T 257!
mwe oTo4st | & | 0.4T 0.4s57}
0T 0.1s! 04T 0.1s7!
6 —0T 0.02 5! —0.4T 0.02 5!
~5
£
a4 x10* x10*
2a 6 —oTo0msT 6[—04T0.0257
= & [0To0004s o 04T 00004 57! g~
w0 .-
3 &4t %/4 gt
2 g2 2op
wn wn 4
1 0 - : 0
0 0.05 0.1 0 0.05 0.1
0 . Strain . . Strain
0 10 20 30 40 0 10 20 30 40
Time (s) Time (s)

Fig. 12. Stress relaxation time history of isotropic MRE with different loading rates and magnetic fields. The inset represents the corresponding

stress—strain results.
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-10% 0 T 0.0005 s~!
--15% 0 T 0.0005 s~!
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Fig. 13. Stress —strain results of isotropic MRE under impact loading with different strain amplitudes and magnetic fields. The inset represents the

time—strain impact loading settings.

Regarding the second set of model predictions, isotropic
MRE are loaded with triangular strain with different amp-
litudes (5%, 10%, and 15%). Two strain rates, 0.0005 and
0.5 s™', are considered. Regarding the magnetic field, 0 and
0.4 T are applied. The stress—strain results are shown in Fig.
13. By comparing the area enclosed through the stress—strain
curve, it is found that a faster loading rate leads to a larger
peak stress and energy dissipation. Furthermore, due to the
nonlinearity, the peak stress does not increase proportionally
to the strain amplitude. Specifically, the peak stress at 5%,
10%, and 15% with a loading rate of 0.5 s™' and magnetic
field of 04 T are 5.6022x10%, 8.0628x10‘, and
1.07591 x 10° N, respectively. Theoretically, this phenomen-
on is caused by the strain amplitude-dependent viscosity evol-
ution law utilized in Eq. (33).

6 Conclusions

In this work, a constitutive model based on continuum mech-
anics theory to depict the modulus magnetic stiffening and the
magnetic-dependent nonlinear dynamic behavior of isotropic
MRE is developed. Specifically, a multiplicatively typed
magnetohyperelastic free energy and a strain amplitude-
dependent viscosity evolution law are proposed. Sub-
sequently, the boundary problem solution and the correspond-
ing numerical implementation method are developed as well.
After parameter identification, a comparison between the ex-
perimental and simulation results is conducted, and it is
shown that the proposed model can depict the modulus mag-
netic stiffening effect and the magnetic-dependent nonlinear
dynamic behavior of isotropic MRE with accuracy. The
model developed in this manuscript can be used to promote
the design and evaluation of MRE-based devices.

Based on the model developed in this work, many paths are
still open for future research. Practically, anisotropic MRE
has a more pronounced modulus magnetic stiffening effect
than isotropic MRE. For example, the extension of the cur-
rent model for isotropic MRE can be extended to anisotropic
cases to analyze the MRE performance of anisotropic MRE.
Furthermore, the current model can be implemented in com-
mercial finite element software such as ABAQUS through a
user element (UEL) to predict the magnetomechanical

0106-11

performance of MRE-based devices.
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