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Public summary

m The CEEMDAN-Multi-Att-RL structure advocated in this paper improves the trading ability of financial time series data
compared with the deep reinforcement learning without any processing.

m This paper explores two investment strategies of dynamic portfolio optimization using deep reinforcement learning. In-
vestors can choose them according to their own risk preference.

m Appropriate deep learning network and reward settings are configured according to the given stock market environment.
These enhance learning effectiveness of deep reinforcement learning.
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Abstract: There are many challenging problems for dynamic portfolio optimization using deep reinforcement learning,
such as the high dimensions of the environmental and action spaces, as well as the extraction of useful information from a
high-dimensional state space and noisy financial time-series data. To solve these problems, we propose a new model struc-
ture called the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) method with multi-
head attention reinforcement learning. This new model integrates data processing methods, a deep learning model, and a
reinforcement learning model to improve the perception and decision-making abilities of investors. Empirical analysis
shows that our proposed model structure has some advantages in dynamic portfolio optimization. Moreover, we find an-
other robust investment strategy in the process of experimental comparison, where each stock in the portfolio is given the
same capital and the structure is applied separately.
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1 Introduction plied another deep reinforcement learning technique, the deep
Q-network (DQN) algorithm, to stock market production.
Moreover, Lee et al.l” processed high-frequency data through
wavelet transformation and then used deep reinforcement
learning to trade in financial time series.

Many works relative to quantitative finance based on deep
reinforcement learning have often been limited to single as-
sets and lacking in the dynamic optimization of portfolios, as
with Carta et al.”! and Théate and Ernst”. The portfolio can
increase capital capacity and have more application scenarios
in quantitative transactions. In addition, optimizing the invest-
ment portfolio can provide hedging ability and make the re-
turn more robust. This paper explores two investment
strategies of dynamic portfolio optimization using deep rein-

Reinforcement learning, a type of interactive learning without
learning labels, requires constant exploration and updating of
decisions in an unknown environment. In addition, the
agent’s strategy must be optimized through feedback from the
environment. Reinforcement learning has been applied to fin-
ancial markets for many years. For example, Neuneier!! ap-
plied reinforcement learning to financial asset trading.
Nevmyvaka et al.”! performed a large-scale empirical applica-
tion of reinforcement learning to optimize transaction execu-
tion in the modern financial market for the first time. Meng
and Khushi® believed that the transaction cost can have a sig-
nificant impact on the profitability of reinforcement learning,

so they evaluated the impact of the transaction cost and forcement learning. The first strategy is to give a fund that
bid/ask spread. Reinforcement learning is also often used in can meet the portfolio’s daily trading volume and then use
the stock market. However, it encounters bottlenecks in deal- deep reinforcement learning to dynamically adjust the posi-
ing with a large collection of states, such as stock data. There- tion of stocks in the portfolio on each trading day. The other
fore, researchers have considered applying deep reinforce- strategy is to allocate the fund to each stock in the portfolio
ment learning for this purpose. Xiong et al.” took the stock equally and then use the strategy of deep reinforcement learn-
prices of each trading day as the market environment. Then, ing to act on each stock. Moreover, to restore the details of
they trained the deep reinforcement learning agent in the mar- the stock market environment, high-frequency stock data are
ket environment and ultimately obtained an adaptive trading used for the simulation. The high-frequency data of multiple
strategy. Their deep reinforcement learning method showed a stocks in a portfolio lead to high state-space dimensions. Sim-
better effect than the two benchmarks in the Sharpe ratio and ilar to Lei et al.l'"!, we adjust the network structure to improve
cumulative return. Brim™ applied the double deep Q-network the learning ability of a deep learning network. In this paper,
(DDQN), a deep reinforcement learning algorithm, to a pair the multi-head attention network, introduced by Vaswani
trading strategy in the stock market for profit. Gao et al."! ap- et al.'"), is considered. The stock high-frequency data are of-
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Fig. 1. Model structure.

ten mixed with a large amount of noise, so the original high-
frequency data are decomposed and denoised by the com-
plete ensemble empirical mode decomposition with adaptive
noise (CEEMDAN) method to reduce the effect of noise and
maintain the form of the time-sharing charts of each factor of
the stock as much as possible. The CEEMDAN method is an
improved version of the empirical mode decomposition
(EMD). The EMD method is an adaptive signal time-fre-
quency processing method proposed by Huang et al."”, which
can analyze nonlinear and nonstationary data. However, the
EMD method still has a mode-mixing problem. Torres et al.!"”
proposed the CEEMDAN method, in which a specific noise is
added at each stage of data decomposition, and a unique
residue is computed to obtain each mode. In this paper, we
propose the structural CEEMDAN multi-head attention_re-

inforcement learning (Multi_Att RL) method, which integ-
rates the CEEMDAN method, multi-head attention network,
and reinforcement learning. The simulation results show that
this structure has a better effect on the two different invest-
ment strategies mentioned above.

The rest of this paper is organized as follows. The method-
ology used in this paper is introduced in Section 2. The em-
pirical part is given in Section 3, and we verify the perform-
ance of the proposed model structure and carry out multiple
groups of check experiments in this section. Section 4 con-
cludes this work.

2  Methodology

Trading with reinforcement learning requires continuous
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perception and decision-making. Environmental perception
requires learning feature representations from high dimen-
sions of environment space and noisy financial time series.
Decision-making requires a model to explore the environ-
ment online without any supervision. To address these two is-
sues, we propose the CEEMDAN_ Multi Att RL structure,
which combines several methods to improve the state-space
representation learning and decision-making abilities. In this
section, the operation of the structural CEEMDAN
Multi_Att RL model is described in detail. Then, several
methods involved in the structure are introduced, including
the CEEMDAN method and multi-head attention network. Fi-
nally, we illustrate the updating of the network in deep rein-
forcement learning along with the set of the state space and
reward.

The CEEMDAN Multi Att RL structure, an improved
version of deep reinforcement learning, is described below.
First, to reduce noise and eliminate the impact of data dimen-
sions, the original high-frequency stock data are processed
with the CEEMDAN method. The high-frequency data are
available at the minute level. For each stock, we gather its
five basic technical indicators, namely Open, High, Low,
Close, and Volume. We also construct other quantitative
factors by these basic technical indicators. Then, the CEEM-

DAN method is used to decompose the factor sequence val-
ues of each stock. Hence, several decomposition modes and a
residual of each factor sequence values can be obtained. Some
of the necessary decomposition modes are extracted to recon-
struct the original factor sequence. The reconstructed factor
sequence values can better retain the waveform of the origin-
al factor sequence. Moreover, the sequence values are nor-
malized. Using these sequence values as input to the model is
beneficial for machine learning and training. Next, the ac-
count information and the factor sequence values processed
by the CEEMDAN method of each stock are set as the input
of the whole model. The account information includes the
balance and position information of each stock. Then, rein-
forcement learning with the multi-head attention network is
performed on the input data.

The model generates action through the multi-head atten-
tion network with the probability of 1 —¢€, and generates ac-
tion randomly with the probability of €, where € decreases
with time ¢. This process can be expressed as

e—e¢€/(t+1).

After the model executes the action, the model gets the cor-
responding reward and reaches a new state. According to the
new reward and state, the model obtains new strategies and

Algorithm 2.1 CEEMDAN_Multi Att RL algorithm.

Require: Technical indicators, including the Open, High, Low, Close, Volume, Amount, Open MA 2, Open_MA 5, and Open MA_10 (All technical

indicators are at the minute level);
Ensure: Sequence value processed by the CEEMDAN method;

1: Perform CEEMDAN so that IMFy,--- ,IMF, and R,(¢) of each factor sequence are obtained;

2: For the jth factor of the ith stock, add the values of the corresponding positions of arrays IMF, -+ ,IMF,_; to obtain a new sequence value D; j;
Require: Sequence value p of technical indicators processed by the CEEMDAN method, Account information (balance and position information of each

stock), Q network architecture and €;
: Initialize all parameters 6 of the Q network randomly;

. Initialize the action-value function Q corresponding to all states and actions based on 6;

3

4

5: Initialize replay memory D;
6: fori=1,...,tdo

7. Initialize state S to obtain sy;
8
9

Initialize a random process € for action;

Take s, as the input of Q network to obtain the Q value outputs corresponding to all actions;

10:  Select a, = argmax,, O(s,as,6);
11:  Execute the action g, in the state s, to obtain the new state s;,; and reward r;;
12:  Decide whether to terminate the states (is_end = true/false);
13:  Save (sy, ay, 11, S¢+1, 1s_end) to replay memory D;
14: S =513
15: M samples (sk, ak, 'k, Sk+1, is_end) are sampled from replay memory 9, and calculate the current target Q value yy;
Tk, is_end = true;
160 = 7 +ymax O(s",a’;0k—1), is_end = false;
17: Use the meanasquaresp loss function:
L) = Exl(rc +ymax O(s", a3 6-1) = O(s,a;00))*1;
18:  The gradient back propagation of the neural network is used to update all the parameters 6 of the Q network;
19:  If 5441 is in the termination state, the current round of iteration is completed; otherwise, continue to iterate;
20: end for
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generates new actions. When the structure is applied to stock . B OK"
trading, the actions include buying, holding, and selling. The Attention(@Q, K, V) = softmax vd, V. &

model continues to learn until the end of the training. The
flowchart of the whole model framework is shown in Fig. 1.
In the flowchart, D,; shows the sequence value of the jth
factor of the ith stock in the stock dataset. These sequence
values are processed by the CEEMDAN method. It is as-
sumed that there are n stocks in the flow chart, and each stock
has j factors. All B,;, H;, and S, constitute the action space in
reinforcement learning, in which B;; represents the jth buy-
ing volume of the ith stock, H; represents holding the ith
stock without any trading, and S, represents the jth selling
volume of the ith stock. In Fig. 1, m represents the number of
discrete values of the possible trading volume. The learning
process of the proposed CEEMDAN_Multi Att RL struc-
ture is presented in Algorithm 2.1 through simple pseudo-
code. Later in the paper, we introduce each part of the pro-
posed structure, including the specific data processing pro-
cess, the multi-head attention, the description of the network
update, and the set of the state space and reward. Finally, the
two investment strategies mentioned in Section 1 are
described.

2.1 CEEMDAN

To overcome the difficulty of the neural network processing
stock data with large fluctuations and much noise, it is neces-
sary to preprocess the original stock data. Thus, the CEEM-
DAN method is adopted. This method can not only eliminate
mode mixing effectively but also make the reconstruction er-
ror of the sequence almost zero. Moreover, the computational
cost is greatly reduced. The CEEMDAN method decomposes
the original signal as follows:

X(t) = Z IMF, + R, (1), > 0,

i=1

(1

where IMF, is the ith decomposition mode, n represents the
degree of signal decomposition and R, (7) is the residual.

According to Eq. (1), we combine IMF,,--- ,IMF,_, to ob-
tain D, ; to approximate the waveform of the original signal by
the CEEMDAN method. The combined waveform can elim-
inate the influence of dimension. In addition, the waveform
oscillates around zero, so the value of the waveform is condu-
cive to machine training. As the noise of IMF, is relatively
large, it is not combined with IMF,,--- ,IMF,_,.

2.2 Multi-head attention

The attention function can be described as a mapping query
(q) and a set of key-value (k-v) pairs to the output, where ¢,
k, v, and the output are vectors. The output is calculated as
the weighted sum of v, where the weight assigned to each v is
in terms of ¢ and k. Scaled dot product attention is a normal-
ized dot product attention, where the dimensions of query and
key are d,, while the dimension of value is d,. In practice, a
set of attention functions of queries are calculated simultan-
eously, and queries are packed together into a matrix Q.
Meanwhile, keys and values are also packed together into
matrices K and V. Therefore, the scaled dot product attention
function is calculated as follows:

3-4

Usually, it is not enough for one scaled dot product atten-
tion to operate among @, K, and V. This deficiency leads to
the proposal of multi-head attention. The operation process of
multi-head attention involves making a linear transformation
for Q, K, and V, and then applying the scaled dot product at-
tention to calculate the corresponding results. If we carry out
the above operations many times and combine the results ob-
tained each time, then we can make a linear transformation to
obtain the output. The formula obtained by Vaswani et al.!' is
as follows:

Multihead(Q, K, V) = Concat (head,, ...,head,) W°,  (3)

head, = Attention (QW?, KW, VW),

where & indicates the number of parallel attention layers
or heads, W¢ g R WK g Rmwxde WV g Rmowxd WO g
Rixdmose - and d, = d, = dposa/h. Compared with scaled dot
product attention, multi-head attention allows the model to fo-
cus on the information of different representation subspaces
from different locations; however, its operation efficiency is
not reduced. The structure of multi-head attention is shown in
Fig. 2.

2.3 Construction and updating of the network

In this paper, the Q-network in deep reinforcement learning is
modified, as shown in Fig. 3, in which the multi-head atten-
tion network is abbreviated as Multi_Att. The attention mech-
anism embedded in the multi-head attention network is a
problem-solving method that mimics human attention. Usu-
ally, the attention mechanism is applied to filter out high-
value information from large amounts of information. High-
frequency stock data are large and irregular. In order to learn
different parts of the state space with different degrees of at-
tention in reinforcement learning, the hidden layer of the Q-
network adopts a two-layer multi-head attention structure to
improve the learning accuracy. Finally, a dense layer (fully
connected layer) is added before using the softmax layer as
the output. Specifically, the dense layer can greatly reduce the
impact of the feature location on classification.

To obtain the maximum return, the deep reinforcement
learning guides the actions of every step through continuous
interaction with the environment and learning strategies. In
reinforcement learning, the action-value function is defined as
Q(s,a). The specific formula proposed by Sutton and Barto™
is as follows:

Q(s,a) = Ezr (R1+I +7R1+2 +72Rt+3 +... | S/ = S’AI = a)v

where S, is a state at time 7 in its environment state set, and A,
iS an action at time ¢ in its action set. R,,, obtained in terms of
action A, taken in state S, is the reward at time #+ 1. y is the
discount factor that weights the importance of future rewards
versus immediate rewards. 7 represents the strategy, which is
the basis for taking action. Using the Bellman equation', the
action-value function can be simplified as follows:

0(s,a) =E,(R+yQ(S .1, Au) | S = 5,A, = a).
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Fig. 3. The structure diagram of the Q-network.

Multi_Att Multi_Att

For all possible actions «', if the optimal value Q(s’,a’) of
sequence s’ is known in the next time step, we need to choose
action @’ to maximize the expected value of R+yQ(S .1,A.1)-
Then, the optimal action-value function is defined as follows:

0(s,a) =E, (R+ym{1x o@s',a)| S, =5,A = a).

Deep reinforcement learning uses the Q-network to estim-
ate the action-value function Q; namely, Q(s,a;0) = Q(s,a).
The loss function L,(6,) of the Q-network can be set at the kth
iteration, and the formula is given by

Li(6) = E,[(R+ymax O(s',a’;6,-,) — O(s,a;6,))’].

The Q-network can be trained by minimizing a series of
loss functions, L.(6,).

2.4 Setting of state space and reward

This section mainly introduces the state space and reward.
Deep reinforcement learning is open. A series of factors can
be customized, such as the environment, state, action, reward,
and deep learning network. For the stock market, the target of
deep reinforcement learning is to maximize reward. In this
paper, the reward is set as the return value of the portfolio. At
the same time, the agent can have the environment for train-
ing resemble a real stock market transaction environment by

3-5

adding various constraints (e.g., transaction cost). Referring
to Lee et al.'”, some basic stock factors after preprocessing are
used to constitute the state in reinforcement learning, such as
the stock price, trading volume, and other quantitative factors
constructed by these basic factors.

To restore the basic information of the stock market as
much as possible, we make a personalized construction of the
state space for the stock market environment. The state space
contains account balance information, stock position informa-
tion, stock price information (according to the investor’s trad-
ing time, such as open price), and various factors of the stock
processed by the CEEMDAN method. The information is up-
dated every trading day. Therefore, the agent can continu-
ously improve the strategy ability through trial and error.

Meanwhile, if we take the investor’s trading at the opening
as an example, then the return of each stock between adjacent
trading days is given by

Open

i+l

_ Open,

R, Y.(1-tax_fee), i=1,---,n,

Open,,
where R;, represents the rate of return of the ith stock at time
t, Open,, represents the open price of the ith stock at time ¢,
and tax_fee is the transaction fee. tax_fee does not exist if
there is no position change in the corresponding stock.

2.5 Description of the two strategies

This paper applies the CEEMDAN_Multi_Att RL structure
to two different investment strategies. Section 1 briefly intro-
duces the principles of these two strategies. In this section, we
introduce these two strategies in more detail through Fig. 4.
First, we assume that the total capital is M, and the stock pool
of the portfolio consists of n stocks. For the first investment
strategy, the CEEMDAN_Multi_Att RL structure dynamic-
ally allocates the total capital A to n stocks on each trading
day. Not all capital is used for trading on each of these trad-
ing days. When extreme market conditions are predicted, the
structure frees up part of the capital for hedging. However, in
the second investment strategy, the total capital is divided in-
to n equal parts in advance to ensure that each stock has the
same initial capital. Each stock is dynamically adjusted by an
independent CEEMDAN_Multi_Att RL structure with the
same initialization parameters. Similar to the first strategy, a
portion of the funds are freed up for each structure. For each
trading day, the average of the returns obtained by n struc-
tures is the return of the second strategy.

3 Empirical analysis

In this section, we empirically show the effectiveness of the
CEEMDAN_Multi Att RL structure. Aiming at China’s
stock market, ten stocks in the SSE 50 Index are set as the
stock pool of the model. Then, a variety of structures are ap-
plied to the portfolio to verify whether the data preprocessing
and the change in the deep network improve the effect.
Moreover, the two investment strategies mentioned in Sec-
tion 1 are adopted to compare their performance. Addition-
ally, the uniqueness of this structure in single-stock trading is
verified through experiments. Details of the experiments are
described below.
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Fig. 4. Principles of the two strategies.

3.1 Training set and test set

The reason for choosing the constituent stocks of the SSE 50
Index as the stock pool of the model is that these stocks have
a large market capitalization and high liquidity. These charac-
teristics can reflect the current market circumstances to a cer-
tain extent. To verify the effect of the proposed CEEMDAN _
Multi_Att RL structure, the structure is trained and tested in
three different time periods. As shown in Fig. 5, three peri-
ods span 2017-2021. Moreover, the interval of each training
set and test set is a year. The reason for choosing these time
periods is that the characteristics of the stock market in these
years are different. The market fell in 2018, rose in 2019, and
was volatile in 2020. Testing separately in different markets is

calculate the
average return

second strategy

helpful to test the effect of the model.

3.2 Data preprocessing

Data cleaning has always been a key part of using models to
simulate and backtest historical data in financial markets.
These models are based on algorithmic trading methods, such
as machine learning and deep learning. Combining the char-
acteristics of China’s stock market and the requirements for
the reinforcement learning model, this paper performs the fol-
lowing data cleaning of the market data of individual stocks.
First, we should fill in the gaps in the individual stock data
owing to the suspension of some stocks and other reasons to
ensure that the length of each stock data sample is the same as

2017-01-01 2018-01-01 2019-01-01 2020-01-01 2021-01-01
Train set 1 Test set 1
Train set 2 Test set 2
Train set 3 Test set 3

Fig. 5. Train set and test set.
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the transaction date. This approach ensures that the dimen-
sions of the stock in the process of setting the environment
space are the same. Second, we should limit the ups and
downs of stock data. China’s stock market is limited to 10%
for the main board. However, due to errors in the market data-
base or other reasons, there are occasionally overshot and
oversold data in the raw data. To avoid the interference of ab-
normal price information, it is necessary to restore the stock
price that exceeds the decline or the increase to the pre-
scribed limit level.

Considering China’s stock market, each stock generates
241 minutes of data during the 4-hour trading period from
9:30 to 11:30 and 13:00 to 15:00 on each trading day. The
fluctuation of the data in minutes is often abnormally large.
As there are many retail investors in China’s stock market,
the operation of retail investors produces strong noise. If the
minute data are directly used, the amount of data and the data
noise will be significant. Therefore, CEEMDAN is con-
sidered to reduce noise. The frequency decomposition of data
often brings unexpected results. To justify the CEEMDAN
method, the stock numbered 600009 is chosen randomly. The
EMD and CEEMDAN methods are used to process the
minute data of the opening price of this stock on January 11,
2019. The processing results are shown in Fig. 6. We can see
that the later IMF curve is smoother than the original signal.
However, the general trend of the original signal is retained.

3-7

According to Section 2.1, we combine IMF,,--- ,IMF,_, to
approximate the waveform of the original signal. K is a para-
meter that can be set according to the requirements. The com-
parison between the combined result of IMF,,-- ,IMF,_, and
the original signal is shown in Fig. 7. Similarly, the EMD
method is used for the same processing. Its results are shown
in Fig. 7.

3.3 Analysis of trading points using the structure

A good stock market investment strategy model reasonably
allocates funds to the stocks in the portfolio. In addition, the
strategy can be used to buy low and sell high for these stocks
as much as possible. This means that the strategy can predict
a low price of the stock within a trading time range. Hence,
the model buys the stock. When the stock is predicted to
reach a high price, the model sells the stock to earn the
spread. The CEEMDAN_Multi_Att RL structure is used to
analyze the trading time points of three different stocks in dif-
ferent years. The results are shown in Fig. 8. The ordinate la-
bels of the corresponding subgraphs in the figure indicate the
open prices of the stock. For example, price 601166 is the
open price of the stock numbered 601166. The curves in
Fig. 8 show the price trend of the corresponding stock in the
corresponding year. The red dots indicate that the model has
bought the stock at these time points, the green dots indicate
that the model has sold the stock, and other points mean that
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Fig. 7. The CEEMDAN and EMD method to process stock minute data.

the model has not carried out any operation. Observing the
three subgraphs in Fig. 8, we find that when the model pre-
dicts an extreme downward market, it reduces the correspond-
ing stock positions as much as possible or even directly se-
lects short positions. At the same time, when a volatile or
rising market is predicted, the model reasonably adjusts the
position to capitalize on the price difference as much as
possible.

3.4 Setting of comparative experiment

In this part, two investment strategies of dynamic portfolio
optimization using deep reinforcement learning are explored
to compare their performance. Moreover, we test, in terms of
stock market trading, whether the CEEMDAN Multi_Att RL
structure improves the effect relative to deep reinforcement
learning without any changes. For the purpose of subsequent
comparison of the backtest and statistical values, the struc-
tures of various modes are abbreviated. The modes include
benchmark, CMAR_10, MAR 10, CDRL 10, DRL 10,
CMAR 1 m, MAR I m, CDRL 1 m, and DRL 1 m. The
benchmark represents the average compound interest value
for a portfolio composed of 10 stocks. In the abbreviation of
these modes, 10 means using the first investment strategy,
while 1_m means using another investment strategy. CMAR
represents the CEEMDAN_Multi_Att RL structure. MAR
represents the CMAR without data processing. Unlike
CMAR, CDRL does not change the deep learning network.
Similarly, unlike CDRL, DRL does not include data
processing.

To carry out the dynamic position, the structures perform
operations according to the model’s strategy on each trading
day. For structures using the first investment strategy, the
actions are for the portfolio. Similarly, for structures using an-
other investment strategy, the actions are for a single stock.
For practical operability, the actions taken by each stock are

3-8

150 200 250

integers. If the action value is positive, we buy the quantity of
the corresponding amount. If the action value is negative, we
sell the quantity of the corresponding amount. Finally, if the
action value is zero, we do not take any action. All structures
consider adjusting positions when trading opens.

3.5 Analysis of the compound interest results of the
backtest

Figs. 9—11 show the performance of different structures in
different years. The left subgraphs of each graph represent the
result of the first investment strategy, and the right subgraphs
represent the result of another investment strategy. We can
see from Fig. 9 that the compound interest of CMAR 10
structure is mostly in the leading state, but it fluctuates
greatly. In addition, although the CMAR 1 m structure and
MAR 1 m structure do not stay ahead most of the time, their
compound interest trend is stable, and the CMAR 1 m struc-
ture even exceeds the leading CMAR_10 structure in the fi-
nal months of 2018. Other structures are weaker than the
CMAR 10 structure and fluctuate greatly, indicating that data
preprocessing and the adoption of the multi-head attention
network can improve the effectiveness of deep reinforcement
learning.

In Fig. 10, the CMAR 10 structure performs well and
maintains a leading position but still fluctuates greatly. The
CMAR 1 m structure and MAR_1 m structure are still ro-
bust, although the compound interest is weaker than that in
the CMAR 10 structure. The MAR 1 m structure per-
formed poorly in 2018, even worse than the benchmark mul-
tiple times. Because the MAR _1_m structure does not prepro-
cess the data, the noise of minute data affects the decision-
making ability of the structure. The performance of other
structures is still weaker than that of the CMAR_10 structure.
This result shows the steady improvement brought by data
preprocessing and network changes again.
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In Fig. 11, the CMAR 1 m structure and MAR 1 m struc-
ture perform well, and the trend is steady. Although the
CMAR 10 structure occasionally exceeds the CMAR 1 m
structure, the CMAR 1 m structure is ahead of the
CMAR 10 structure most of the time. Similarly, the perform-
ances of other structures are still more volatile and weaker
than that of the CMAR_10 structure.

3.6 Statistical analysis of backtest results

To compare the performances of the above different struc-
tures accurately, Sharpe ratio, max drawdown, and relevant
statistical indicators of the portfolio’s simple interest are in-
troduced. The max drawdown is calculated as follows:

CI,

max CI;
j=lei

MD = min

=1 n

]

where CI, represents the compound interest value of the port-
folio on the ith trading day, and n represents the backtest

2018-07
date

2020-07
date

2020-07

2018-09 2018-11 2019-01

—— price

2020-09 2020-11 2021-01

—— price
.

2020-09 2020-11 2021-01

date
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days.

The Sharpe ratio can measure the relationship between
portfolio risk and return, that is, how much excess return will
be generated for each unit of risk. Hence, the larger the value,
the better the performance. Max drawdown reflects the de-
cline of the portfolio compound interest; thus, this indicator is
expected to be small. The statistical parameters in this paper
are simplified and explained in Table 1. Statistical value ana-
lyses are shown in Tables 2—7.

Analyzing the six tables, we found that the CMAR 1 m
structure and MAR 1 m structure perform well regardless of
the Sharpe ratio or max drawdown, especially the
CMAR 1 _m structure. The CMAR_1 m structure can be ro-
bust when the compound interest value is high. The
CMAR 10 structure has a considerable compound interest
value but fluctuates greatly. In addition, comparing different
structures using the same investment strategy, it can be con-
firmed that data processing and the network change improve
the effect. However, the impact of the network change is
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greater. Comparing Tables 2 and 3, it can be found that the
Sharpe ratio of the CMAR 1 m structure is 2.85 times high-
er than that of the CMAR_10 structure. Moreover, the com-
pound interest is also slightly higher. Comparing different in-
vestment strategies with the same structure, the second invest-
ment strategy is significantly better in terms of the max draw-
down, while the first investment strategy is generally better in
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statistical indicators of simple interest. Comparing Tables 4
and 5, it is shown that the first investment strategy has great
advantages in compound interest and various statistical indic-
ators of simple interest. However, in terms of the Sharpe ra-
tio and max drawdown, the effect of the second investment
strategy is still robust. In addition, the compound interest res-
ults in the four structures are still considerable. Observing
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Table 1. Descriptions of abbreviations of statistical parameters.
Abbreviation Description
CI Compound interest value of structure
SR Sharpe ratio of structure
MD max drawdown of structure
Mean of dr Mean of simple interest of structure
Std of dr Standard deviation of simple interest of structure
Min of dr minimum of simple interest of structure
Qn of dr Quartile n of simple interest of structure
Med of dr Median of simple interest of structure
Max of dr median of simple interest of structure
Table 2. Backtest results of the first strategy in 2018.
2018 benchmark CMAR_10 MAR_10 CDRL 10 DRL 10
CI 0.8538 1.0907 1.0676 1.0370 1.0000
SR —0.5790 0.5609 0.4503 0.2900 0.1046
MD —0.2294 —0.1336 —0.0957 —0.1050 —0.1256
Mean of dr —0.0005 0.0004 0.0004 0.0002 0.0001
Std of dr 0.0142 0.0134 0.0131 0.0140 0.0130
Min of dr —0.0531 —0.0407 —0.0412 —0.0498 —0.0708
Q1 of dr —0.0089 —0.0079 —0.0077 —0.0079 —0.0075
Med of dr 0.0002 0.0006 0.0007 0.0005 —0.0001
Q3 of dr 0.0078 0.0084 0.0078 0.0086 0.0081
Max of dr 0.0463 0.0457 0.0482 0.0437 0.0349
Table 3. Backtest results of the second strategy in 2018.
2018 benchmark CMAR_1_m MAR_1_m CDRL_1_m DRL I m
CI 0.8538 1.1298 1.0937 1.0555 0.9706
SR —0.5790 1.6010 1.0398 0.7624 —0.2508
MD -0.2294 —0.0360 —0.0612 —0.0561 —0.1032
Mean of dr —0.0005 0.0005 0.0004 0.0002 —0.0001
Std of dr 0.0142 0.0055 0.0063 0.0051 0.0064
Min of dr —0.0531 —0.0144 —0.0240 —0.0147 —0.0250
Q1 of dr —0.0089 —0.0029 —0.0032 —0.0029 —0.0033
Med of dr 0.0002 0.0001 0.0001 0.0004 —0.0002
Q3 of dr 0.0078 0.0033 0.0042 0.0030 0.0036
Max of dr 0.0463 0.0199 0.0200 0.0154 0.0201

Tables 6 and 7, we can see that the CMAR 1 m structure and
CMAR 10 structure are much better than the benchmark in
various indicators. The effect of various structures using the
second investment strategy is still stable. The indicators of the
first investment strategy show that it is a high-yield and high-
risk strategy.

4 Conclusions

In this paper, we advocate for the CEEMDAN_ Multi

Att RL structure, in which the CEEMDAN method, multi-

head attention network, and reinforcement learning are com-
bined. Applying the CEEMDAN method in decomposing and
denoising stock high-frequency data made the state space
more conducive to machine learning. In the meantime, the
processed data can better simulate the real stock market envir-
onment. Multi-head attention was introduced into reinforce-
ment learning, as this network made the model focus on some
key parts of the state space and improved the learning ability
of reinforcement learning. In addition, this paper explored
two investment strategies with this structure. The two
strategies had advantages and disadvantages; accordingly,
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Table 4. Backtest results of the first strategy in 2019.
2019 benchmark CMAR_10 MAR_10 CDRL_10 DRL_10
CI 1.3357 1.5413 1.4418 1.4116 1.3796
SR 2.0358 3.1193 3.1507 2.6594 2.4129
MD —0.1019 —0.0827 —0.0724 —0.0702 —0.1200
Mean of dr 0.0013 0.0019 0.0016 0.0015 0.0014
Std of dr 0.0115 0.0120 0.0096 0.0107 0.0109
Min of dr —0.0346 —0.0363 —0.0282 —0.0316 —0.0298
Q1 of dr —0.0051 —0.0043 —0.0033 —0.0043 —0.0053
Med of dr 0.0013 0.0009 0.0011 0.0008 0.0020
Q3 of dr 0.0076 0.0081 0.0072 0.0063 0.0073
Max of dr 0.0450 0.0521 0.0358 0.0432 0.0392
Table 5. Backtest results of the second strategy in 2019.
2019 benchmark CMAR | m MAR 1 m CDRL 1 m DRL 1| m
CI 1.3357 1.4118 1.3610 1.3411 1.3196
SR 2.0358 4.2549 4.1825 3.2599 3.4278
MD —0.1019 —0.0295 —0.0317 —0.0421 —0.0394
Mean of dr 0.0013 0.0014 0.0013 0.0012 0.0012
Std of dr 0.0115 0.0065 0.0058 0.0070 0.0062
Min of dr —0.0346 —0.0134 -0.0132 -0.0196 —-0.0151
Q1 of dr —0.0051 —0.0023 —0.0019 —0.0023 —0.0027
Med of dr 0.0013 0.0007 0.0009 0.0005 0.0005
Q3 of dr 0.0076 0.0039 0.0041 0.0044 0.0042
Max of dr 0.0450 0.0330 0.0282 0.0326 0.0231
Table 6. Backtest results of the first strategy in 2020.
2020 benchmark CMAR_10 MAR_10 CDRL_10 DRL_10
CI 1.1444 1.3836 1.2743 1.2397 1.1653
SR 0.7393 1.7615 1.4447 1.2661 0.8979
MD —0.1553 —0.1300 —0.1443 —0.1286 —0.1235
Mean of dr 0.0007 0.0015 0.0011 0.0010 0.0007
Std of dr 0.0161 0.0160 0.0139 0.0140 0.0143
Min of dr —0.1138 —0.0948 —0.0930 —0.0781 —0.1025
Q1 of dr —0.0065 —0.0060 —0.0057 —0.0059 —0.0058
Med of dr —0.0005 0.0001 —0.0001 0.0003 -0.0005
Q3 of dr 0.0083 0.0081 0.0074 0.0072 0.0070
Max of dr 0.0662 0.0706 0.0511 0.0719 0.0744

investors could choose them according to their risk prefer-
ences. Finally, the position adjustment strategy of the model
was only carried out at the opening or closing of each trading
day, and this time point was favorable for investors to per-
form corresponding operations.

We only considered investment strategies for investors of
two different risk preference types in this study. Later, to
achieve stability and profitability of the model, we will con-
sider predicting different market circumstances, thereby dy-
namically adjusting the two investment strategies. The predic-

tion of market circumstances is the greatest challenge we cur-
rently face, as it requires the model to perform well in select-
ing the trading time point. For China’s stock market, it is pos-
sible to predict the market from traditional indicators, such as
the decline of the three major stock market indices (Shanghai
Stock Exchange Index, Shenzhen Stock Exchange Index, and
ChiNext Index), as well as the consumer price index (CPI)
and producer price index (PPI) to make adjustments for in-
vestment strategy.
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Table 7. Backtest results of the second strategy in 2020.
2020 benchmark CMAR_1 m MAR 1 m CDRL_1 m DRL I m
CI 1.1444 1.4176 1.2883 1.2313 1.1735
SR 0.7393 3.6530 2.9738 2.1343 1.6955
MD —0.1553 —0.0413 —0.0301 —0.0461 —0.0528
Mean of dr 0.0007 0.0015 0.0011 0.0009 0.0007
Std of dr 0.0161 0.0077 0.0065 0.0074 0.0070
Min of dr —-0.1138 -0.0353 —-0.0169 —-0.0351 -0.0394
QI of dr —0.0065 —0.0021 —0.0022 —0.0027 —0.0030
Med of dr —0.0005 0.0006 0.0002 0.0005 —0.0001
Q3 of dr 0.0083 0.0041 0.0036 0.0038 0.0033
Max of dr 0.0662 0.0560 0.0375 0.0344 0.0384
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